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In this paper, an unreliable serial production line in which nonconforming items are 

sent back for rework is studied. The line consists of existing machines and optional quality 

control stations (QCSs). The designer of such a production line needs to decide where to 

install the QCSs along the line and to determine the production rate, so as to maximize the 

expected operational profit rate obtained at a steady state. An efficient algorithm for solving 

this problem is presented; several extensions of the problem are discussed. An extensive 

simulation study proves the applicability of the model in realistic settings and is used to 

derive some insights about the nature of optimal solutions. 
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1. Introduction 

In long production lines, such as those found at semiconductor fabrication facilities 

(FABs), inspection allocation problems naturally arise and the planner must determine 

where along the line to locate quality controls stations (QCSs). The location of the QCSs 

affects both the expected production cost per item and the production rate of the line. 

Since both measures are of interest to the designer of the quality control system, we 

advocate using the expected profit per time unit measure that represents both 

aforementioned measures in terms of monetary units. We refer to this measure as the 

profit rate. 

The literature on allocating inspection efforts in multistage production systems 

dates back to Bishop and Lindsay (1964) who introduced an inspection allocation model 
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to minimize the total production cost per unit. Yum and McDowell (1987) introduced an 

inspection model that allows rework, off-line repair, and scrapping.  In their model, 

inspection errors can occur, and variable inspection, production and repair costs are 

given. They formulated the problem of optimally allocating inspection efforts to 

minimize total costs per item as a mixed integer linear program. Tayi and Ballou (1988) 

and Raghavachari and Tayi (1991) developed an integrated framework for 

manufacturing, inspecting and reprocessing activities in serial production systems 

operating under a lot-by-lot production mode. Subsequent studies presented heuristic 

methods to solve similar inspection effort-allocation problems. See, for example, Taneja 

(1994); Shiau (2002); and Emmons and Rabinowitz (2002). For literature surveys, see 

Raz (1986) and Mandroli et al (2006). 

The inspection effort allocation literature, mentioned above, focuses on production 

systems that are in statistical control where the goal is to detect random defects of the 

processed items rather than monitoring the state of the production process. From a 

mathematical point of view the two approaches are very different. The former assumes 

that the success probabilities of consecutive operations are independent, an assumption 

which is valid only while the system is under statistical control. The latter approach tries 

to detect when a machine goes out of control by exploiting the dependence between 

success probabilities. This dependence is caused by changes in the state of the machine. 

Clearly, the inspection effort allocated for full inspection at various points along the line 

is aimed at complementing the statistical process control rather than replacing it. 

Penn and Raviv (2007) considered inspection effort allocation in serial production 

lines with scrapping only. In their model, the production rate is a decision variable and 

the objective is to maximize the profit rate rather than minimize the production cost per 

item, studied earlier. Higher production rates typically result in higher marginal 

production and inspection costs per item. Due to this trade-off, the optimal rate is not 

necessarily the highest possible one. Penn and Raviv (2008) extended this model to 

incorporate the holding costs of work-in-process and explored the interaction between 

production rate, configuration of the inspection system, and inventory.  
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In this study, we consider a serial production line with N machines and an infinite 

number of identical items to be produced. Processing an item consists of a series of   

operations, where each operation is carried out by a distinct machine. The machines are 

denoted by        . The cost of performing the     operation is denoted by    and its 

processing time is assumed to be an i.i.d random variable with mean   . We make no 

additional assumptions about the distribution of this random variable. Operation  , if 

performed on a conforming item, succeeds with known probability    and fails with 

probability     . If one or more of the operations of an item fails, it is regarded as 

nonconforming. Let      ∏   
 
      denote the conditional probability that an item is a 

conforming one upon departure from    given that it was conforming upon its previous 

departure from   . Note that the assumption of independence among the failure events is 

unnecessary because    is defined as the conditional probability of failure in operation  , 

given that the item was a conforming one before the operation began. 

Quality control stations (QCSs) can be installed between any pair of machines and 

after the last machine in the line. A sequence of machines followed by a QCS is referred 

to as a segment. If a QCS is not installed after the last machine, the sequence of the 

machines after the last QCS in the line is also considered a segment. An installed QCS 

detects all the nonconforming items generated by the machines belonging to the segment 

that contains it. Nonconforming items are sent upstream to the beginning of the segment 

for rework.  

Machines and QCSs are jointly referred to as “stations”. Each item can be 

processed by a single station at a time and each station can process one item at a time. An 

unlimited buffer is located in front of each station where all items that have finished their 

previous operations are waiting to be processed or inspected. A raw material buffer in 

front of the first machine represents the items that have entered the production line but 

have yet to begin their first operation. We assume a general stationary arrival process to 

this buffer, i.e., the inter-arrival times of items at this buffer are i.i.d. We denote the 

expected arrival rate by a. If the steady-state departure rate from the system is also a, the 

system is said to be stable and a is said to be the production rate of the system.  
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Note that the assumption of independence between arrivals of items at the first 

buffer is a simplifying one. Indeed, in actual production systems, the introduction of new 

items to the system is typically based on the system state and controlled by the operator.  

Moreover, the assumptions that the buffer space is unlimited and the exclusion of the 

holding cost of WIP from the profit calculation are useful simplifying assumptions. They 

allow solving the QCS configuration problem to optimality and the obtained solutions are 

in many cases nearly optimal even when the amount of WIP is strictly limited by a 

CONWIP production regime. The above claims are supported by an extensive numerical 

study presented in Section 6. 

A QCS that immediately follows   , if it is installed, is denoted by QCi. A QCS 

configuration is denoted by a set                    of its installed QCSs. Figure 1 

presents an example of the system introduced above. Machines are depicted as squares 

and inspection stations as pentagons. The primary stream of items is depicted as a solid 

arrow, and the reverse stream of nonconforming items that are sent back for rework, as 

dashed arrows. In this example            . 

 

Figure 1: An example of a serial production line with two QCSs 

For a given QCS configuration Y, the location of the last installed QCS before    is 

denoted by      , with the conventions that           if no such QCS is installed and 

that         is the location of the last QCS in the line. To avoid cumbersome notation, 

we use Li rather than Li(Y), whenever the QCS configuration Y is clear from the context.  

For the example presented in Figure 1,                 and     . 

Since the inspection cost and time are likely to be affected by the number of 

production steps in the inspected segment we introduce the following notation: The 

inspection cost per item at QCi for which Li=j is denoted by   
    . The inspection time is 

𝑀 𝑀  𝑀  𝑀  𝑄𝐶 

 

𝑄𝐶 

 

Raw 

materials 

Finished 

products 

Nonconforming Items Nonconforming Items 
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an i.i.d random variable with mean   
    . In addition, there is a fixed capital cost per time 

unit of   
     associated with each installed QCS regardless of its actual work. Note that 

the inspection time and costs are likely to be affected by the number and identity of 

production operations in the segment. The larger this number, the more effort and 

equipment may be needed to carry out the inspection. 

Since capital costs of machines are sunk costs, they are eliminated from the 

optimization process. Each finished product is sold as a commodity in the market for    

monetary units. A penalty of    monetary units is incurred by each nonconforming 

product that the system delivers. Note that if QCN is installed, the system delivers only 

conforming items. 

In our basic setting, nonconforming items detected by QCi, are sent back for rework 

on machines           . The processing times, processing costs, inspection cost, and 

the success probabilities of reworked items are identical to those of first-time items. An 

item may be reworked more than once. We introduce and analyze a more general setting 

in Section 4.   

In this study, we present a method for selecting a production rate a and a QCS 

configuration Y, so as to maximize operational profits. The term “operational profit” 

refers to the total revenue net of variable production, inspection, and capital costs as well 

as the penalty cost incurred by nonconforming products delivered by the system. The net 

profit is affected also by the capital cost of machines and by the holding cost of work-in-

process (WIP). In Section 6, we demonstrate that the system can typically work at near 

optimal operational profit with modest levels of WIP. 

An intermediate step toward our goal of maximizing operational profit is to solve 

the problem of minimizing the total costs per item assuming a given production rate. We 

refer to this problem as the cost minimization problem (CMP). The CMP may be of some 

practical interest intrinsically but it is studied here mainly to serve as a subroutine of the 

optimization algorithm of the profit maximization problem (PMP).  The contribution of 

this study is twofold. First, it introduces a methodology that can efficiently solve a variety 

of profit maximization problems in the inspection effort allocation domain. This 

methodology generalizes the method used in Penn and Raviv (2007). Second, it 
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introduces an exact and efficient algorithm to solve an inspection effort allocation 

problem characterized by rework and capacity constraints. We note that reworking 

nonconforming items on-line (possibly after performing some offline rehabilitation) is a 

common practice in some industries. 

In Section 2, the cost maximization problem (CMP) is cast as a problem of finding 

a shortest path on a directed graph. In Section 3, it is shown that for the PMP there is a 

small finite set of potentially optimal production rates. Once this set is identified, it is 

possible to solve a CMP for each member of this set and to choose the most profitable 

one as an optimal solution for the PMP. In Section 4, a richer rework model is introduced 

and an adaptation of the previously presented algorithms is proposed. In Section 5, we 

present the results of our numerical study in which we demonstrate the capabilities of the 

proposed algorithm in dealing with very large instances of the PMP. In Section 6, we 

study the relationship between the WIP level and the profit rate under a constant WIP 

(CONWIP) regime using discrete event simulation. We show that the modeling decision 

to allow all stations to work at their maximal capacity while ignoring the holding costs of 

WIP does not prevent us from reaching applicable near optimal solutions. In Section 7, 

we visualized the optimal QCS configuration obtained by our algorithm. We use this 

visualization to draw insights on the effect of various parameters of the systems on the 

optimal QCS configuration and the optimal profit under optimal inspection effort 

allocation. Concluding remarks and directions for future research are presented in Section 

8. All the notations in the paper are presented before they are first used but for the 

convenience of the reader, we also provide a notation summary in the Appendix. 

2. The Cost Minimization Problem  

In this section, we cast the CMP as the shortest path problem. White (1969) introduced 

this idea for a model with off-line repair and uncapacitated stations, but to the best of our 

knowledge, it was never adopted for models with rework and capacity constraints. 

Consider a system working with arrival rate   under a given QCS configuration. 

The system is stable only if the arrival rate of first-time items at each of the system 

segments equals the arrival rate at the first segment. The probability of an item arriving at 
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    being a conforming one is      
. If the system is stable, then the joint arrival rate of 

both first-time and reworked items at each station in a segment ending at      is the 

arrival rate,  , of first-time items at the segment multiplied by the mean number of times 

each item is processed by the stations of the segment, ∑ (       
)
  

    
 

     
. This is 

the arrival rate at each station in the segment                 is  
 

     
. 

Necessary and sufficient conditions for the stability of the system are that the 

potential throughput of each station is greater than the arrival rate that it faces. That is 

 

     
 

 

  
                           

 

(1) 

and for QCSs, 

 

     
 

 

  
     

                 
(2) 

If one or more of the inequalities (1) or (2) holds as equality, then some stations in the 

system are fully loaded. In this case, the system cannot reach steady-state in terms of the 

number of items in its buffers, but the production rate converges over time to  . 

An upper bound on the potential departure rate from a segment, consisting of the 

stations               , is  

       
    

                
     

  (3) 

Note that since no non-conforming items are removed from the system, this is also an 

upper bound on the arrival rate of first-time items at the segment, assuming the system is 

stable. Now, since the value        is determined only by   and  , and is not affected by 

the locations of QCSs outside the segment, it is an upper bound on the production rate in 

any configuration with    ,     and no QCS in between. For convenience, let us define 

         
 

              
 

(4) 
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for all    , to represent the potential throughput of the last segment if it is not ended 

by a QCS. Finally, let us define            to allow unrestricted flow of items out 

of    , if installed.  

Next, let us construct a directed graph         with a node set   

           , with a node for each machine plus two nodes representing the beginning 

and the end of the line. The arc set is defined as                           

  ; with  an arc for any segment that corresponds to a feasible segment under arrival rate 

 .   

Now let us set the length of each arc         as the total cost per item in the 

segment              , 

       
  

    

 
 

  
     ∑   

 
     

    
  

(5) 

The first terms of the right-hand side of (5) is the fixed cost divided by the 

production rate, which represents the contribution of the capital cost to the total 

production cost of each item. The second term is the variable production and inspection 

cost per first-time item incurred by all the stations in the segment. In addition, for any arc 

        let us define 

         (      )   ∑   

 

     

  (6) 

Recall that these arcs represent segments at the end of the line that are not ended by 

a QCS. The first term of (6) is the mean penalty cost for delivered nonconforming items 

and the second term is the total production cost per item. Note that each item passes 

exactly once via such segments. Finally let            represent the fact that no 

penalty cost is incurred if the last QCS is located immediately after the last machine. 

Note that since any arc in the graph represents a feasible segment, any          

directed path in  ,                                      can be associated with a 

feasible configuration with QCSs installed after stations        . Moreover, since the 

length of each arc represents the expected cost per item incurred by its corresponding 
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segment, a shortest path represents a configuration that minimizes the total production, 

inspection, and penalty costs per item subject to the capacity constraints.  

The time complexity of a straightforward procedure to construct the graph   is 

     : The number of arcs is       and for each arc      ,         and        are 

calculated using (3)-(6) in     . Once the graph is constructed, the shortest path can be 

found using Dijkstra's algorithm in      , see Cormen et al (2001). Hence, the 

complexity is dominated by the graph construction step. Algorithm 1 (see below) is a 

more cautious procedure for the CMP with overall complexity of       .  

The time complexity of Algorithm 1 is       since all the operations inside the 

internal loop require a constant amount of time. The complexity improvement is obtained 

by saving on the summation and product operations in (3)-(6) using the recursion 

relations between        and          and between        and         . 

Clearly, it is impossible to solve the CMP in less than       time since this is the 

order of the input size of the problem. Consequentially, the complexity of the CMP 

is      . 
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Algorithm 1 – Constructing the graph [in        
Input:  

Number of machines:   

Machines parameters:          for all         

QCS parameters:   
       

       
     for all          and            

Production rate   

Penalty cost    

Set                     
Set     

for            

set       

set       

set     

                    

set        

if        then       

if         then  

 set         (     
    )  

 set         

else  

set         

set            

      

if      then  

set                 
if         then   

set        
  

    

 
 

  
      

 
  

else  

          

 

 

We conclude this section with a discussion of some extensions to the CMP and 

describe simple methods for resolving them. In some production lines, it is impossible or 

undesirable to carry out an inspection of an operation after other operations have already 

been conducted. For example, inspection of a printed circuit board may be impractical 

after the board has been installed as a subsystem within a laptop. Expressing such 

constraints in our model is straightforward. If operation   must be inspected before 

operation   is carried out, all the arcs          where       and       are removed 

from the graph. 
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Sometimes the rehabilitation process of a nonconforming item consists of an off-

line operation that should be carried out prior to sending the item back for rework. We 

denote the mean cost of the off-line rehabilitation operation for segment       by       

and the corresponding processing time of this operation by      . The expected number 

of times each item passes via this rehabilitation operation is a geometric variable (with a 

support          ) and success probability of     . For example, integrating this 

additional rehabilitation cost into our model can be done by adding      
      

    
  to the 

length (cost) of the arc     . Similarly, the effect of the processing time for the 

rehabilitation operation can be introduced into the model by setting the arc throughput to  

. 

       
    

   (            
     (      )     )

 

The offline operation costs may include the cost of material handling devices that 

are used to return the item to the beginning of the segment. 

3. Algorithm for the Profit Maximization Problem (PMP) 

In this section, we consider the problem of maximizing the total revenue rate net of 

production, inspection, and penalty costs. This problem (PMP) is more complicated than 

the CMP because, in this case, the production rate and the QCS configuration must be 

determined simultaneously. Note that there may be a trade-off between the production 

rate and the total production and inspection cost per item. That is, installing additional 

QCSs may increase the production rate, but result in higher total cost per item. The 

algorithm presented below resolves this trade-off.  

We now explore some properties of an optimal solution of the PMP.  We denote a 

solution to the PMP by       where   is the production rate and   is the QCS 

configuration.       is feasible if the system with QCS configuration   is stable under 

production rate    
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Lemma 1:   If       is an optimal solution of a PMP and    , then at least one of the 

stations is operating at full capacity. In other words, there is a       and      

      such that either 

 

 

     
 

 

  
 (7) 

or  

 

     
 

 

  
     

 (8) 

 

Proof: The expected profit per item in a given QCS configuration can be expressed as 

           [(         )   ∑   

 

      

]  ∑ (
  

     

 
 

  
      ∑   

 
      

     
)

   

  

where          is an indicator function that equals zero if a QCS is installed after the last 

machine in the line and zero otherwise. The first term is the revenue while the second is 

the expected penalty for nonconforming items and the production cost of the segment that 

is not ended by a QCS, if one exists. The last term is the expected production and 

inspection costs in all other segments.  

Note that the objective is to maximize the profit per time unit. Therefore, if in an 

optimal solution the production rate is positive (    ), then the above sum, which 

represents the profit per item, must be nonnegative. In such a case, for a fixed 

configuration, increasing the production rate may only increase the profit rate. Therefore, 

in an optimal solution, the production rate is the maximal possible rate for the selected 

configuration. Q.E.D 

Corollary 1: In an optimal solution       of the PMP, if    , then          for 

some          . 

Proof:  The stations that satisfy (7) and/or (8) are those that maximize the production (or 

inspection) time within the segment. By definition, see (3), these stations determine the 

value of         of the segment. Q.E.D 
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A direct consequence of Corollary 1 is the following corollary: 

Corollary 2: The value of a in an optimal solution of the PMP is a member of the 

following finite set                         ..  

By the construction of the set  , it is clear that | |  (
   

 
). Our algorithm for 

the PMP relies on this observation. Let us denote the objective value (resp., 

configuration) of an optimal solution of the CMP for arrival rate   by        [resp., 

     ],  then the value of an optimal solution to the PMP is obtained by    

         
   

  [          (9) 

The optimization problem (9) can be solved by solving the CMP for each of the 

members of  . The optimal solution of the PMP is            , assuming          

 . Otherwise the optimal solution is      and     . 

Since the computation time of the CMP is      , the overall time complexity of 

this algorithm is      . The space complexity of the procedure is      , since it is 

possible to reuse the memory allocated for the representation of the graph.  

Next, we present two algorithmic improvements that significantly reduce the 

computation time of the algorithm in our numerical experiment although they have no 

implications on the theoretical complexity bound.  Both improvement methods are based 

on identifying members of   that are not candidates for    and save the effort to solve 

their CMP sub-problem. 

First, consider        (
 

  
) as an upper bound on the production rate in any 

stable solution. Such a rate could be achieved in a configuration without any QCSs at all. 

We can use this to reduce the set   and remove all the members of   that are greater 

than   .  

Second, observe that  [            [   ∑   
 
     because         ∑   

 
   . 

The last inequality is true because the total cost per item must include the cost of 

processing it on each machine along the line at least once (in addition to possible rework 

and inspection costs). Based on this observation, the algorithm can skip any member 

  for which  [   ∑   
 
     is smaller than the value of the best solution that was already 
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found. This may be particularly helpful if   is scanned in decreasing order. We note that 

although the sorting of S requires additional computational effort of           , it 

does not contribute to the theoretical computational complexity of       since the 

sorting is performed only once. The sorting procedure is also instrumental in eliminating 

non-unique members of   that are clearly unnecessary.  

Finally, we note that the number of unique members in the set   is affected by the 

numerical accuracy used to represent its members. If the accuracy is high, it is unlikely to 

have                   for different pairs         and        . However, as the 

numerical accuracy is decreased, the number of pairs that seem identical increases. 

Therefore, by rounding all the values in   at a certain decimal digit, the size of the set   

can be greatly reduced, thus proportionally shortening the computation time. The 

resulting solution is an approximated one. The absolute approximation error is bounded 

from above by       [                    where   represents the numerical 

accuracy of the calculation, that is, the smallest difference between two numbers that are 

represented differently by the computer. Since the optimal solution is bounded from 

above by     , the relative approximation error of this procedure is bounded from above 

by       . Clearly, it is possible to increase   artificially in order to save computation 

time at the expense of accuracy. 

 

4. Extensions of the Rework Model 

In the previous sections, we considered a production line where all nonconforming items 

are sent back to the beginning of the segment and reworked by all the stations of the 

segment in exactly the same way as they were processed in the first place. In this section, 

we extend the model in the following manner: 

1. Allowing rework operations to consume different amounts of resources than first-time 

operations.  

2. Sending items for rework beginning with the operation that created the nonconformity 

rather than the first operation of the segment. 
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We denote the ratio between the rework processing time (resp., cost) and the first-

time processing time (resp., cost) of an operation on    by    (resp.,   ). Note that     

(resp.,   ) can be any non-negative number. In particular,       (resp.,     ) indicates 

that the time  (resp., cost) required for a rework operation is greater than the time  (resp., 

cost) required for first-time operations.  

The number of times that an item passes through each machine    is a geometric 

random variable with success probability      , i.e., the average amount of work brought 

to    by a first-time item is (    
       

     
 ). Therefore, the maximal arrival rate for 

which    is stable is 

     

  (               )
 

and    , if installed, is stable for an arrival rate not greater than 
    

  
 . That is, the 

potential throughput of a segment that consist of the stations                is given 

by 

          (
      

    (                    )
   

    

  (              )
 
    

  
 
)  

for all          . The value of          is calculated exactly as in (4).  

Similarly, the total inspection and production cost per item incurred by all the stations of 

the corresponding segment is 

       
  

    

 
   

    (  
      

    
)  ∑   (    

       

     
)

 

     

  

for all          . The value of          is calculated exactly as in (6). 

Now it is possible to apply the algorithms presented in Sections 2 and 3, using the 

new values of        and       , to solve the extended version of the CMP and PMP. 

The complexity of the algorithms is unaffected. 
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5. Benchmarking the Algorithm 

In this section, we benchmark the PMP algorithm, described in Section 3, on a set of 44 

problem instances, each with 1000 machines. Recall that the algorithm for the PMP calls 

the CMP algorithm numerous times. We report on the actual number of calls to this 

algorithm and thus the need to benchmark the CMP algorithm separately is saved.   

The algorithm was implemented in Mathwork Matlab v7.11.0 without compilation 

and ran on an Intel Xenon X3450, 2.66Ghz workstation. The algorithmic improvements 

presented at the end of Section 3 are included in this implementation and we kept track of 

the number of calls to the CMP that were eliminated in order to estimate the benefit of 

these improvements. 

 As a benchmark, a set of 44 problem instances was constructed based on 22 

settings for processing and inspecting times and costs (see Table 1) and two revenue and 

penalty settings. The first two settings consist of instances with identical characteristics 

for all the machines and all the QCSs. In these instances, the mean inspection time and 

cost are proportional to the length of the inspected segment. In the first instance, the fixed 

capital cost of the QCS is also proportional to the length of the inspected segment while 

in the second it is fixed for all QCSs regardless of the length of the inspected segment. 

For instances 3-22, the mean processing time and mean processing cost were selected 

randomly and independently for each machine from the interval (2,9) and the success 

probability of each operation was selected from the interval (0.998,1). In instances 3-12, 

the mean inspection time and costs are proportional to the total inspection time and costs 

in the corresponding segment. In instances 13-22, the values of these parameters were 

selected randomly and independently of the corresponding processing operations. Each of 

the 22 settings was tested with two sets of values for    and   , namely,            

     and                  . The complete dataset and the Matlab code are 

available from the author upon request.  
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ID 
Processing 

times / item 

Inspection Time / 

item 

Processing 

Cost / item 

Inspection Cost / 

item 

Success 

Probability 

Capital Cost / time 

unit 

1      
  

    

       
       

                  
  

     

          

2        
              

                  
         

3-

12 
          

  
    

    ∑   

 

     
 

          

  
    

    ∑   

 

     
   

            

  
    

     ∑   

 

     
 

13-

22 

  
    

            

  
    

            

  
    

              

Table 1: Description of the Benchmark Problem Instance 

Table 2 presents the performance results of the algorithm. In the first column the 

IDs of the time/cost settings are presented. In the rest of the table, the first four columns 

correspond to the                 setting and the last four to the    

               setting. The first column in each such group presents the objective 

value of the optimal solution (expected profit per time unit) while the next column 

presents the computation time in seconds. In the third column, the number of calls to the 

CMP sub-problems is presented. In the last column of each group, the percentage of these 

sub-problems out of the total number of members in the set of potentially optimal 

production rates   is presented. 

It is apparent from the table that the algorithm is capable of solving all the 1000 

machine instances in our benchmark set in a reasonable period of time. Even the most 

difficult instance was solved in slightly more than 31 minutes (instance 18 with    

             . We also observe that the instances with smaller revenue per 

conforming item,        , are much harder to solve compared to those with the higher 

        . This is because the lower bound on the production rate, discussed at the end 

of Section 3, grows proportionally with   . Higher values of this lower bound make it 

possible to eliminate additional potential production rates from consideration. Indeed, the 

average computation time of the         instances is about a tenth of the average 

computation time of those with         . It might be the case that instances with 

smaller    could take even a longer period of time to solve because larger number of calls 

to the CMP would have to be invoked. However, by extrapolating from the share of CMP 
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solved in the hardest instances we can bound the computation time of the 1000 machines 

PMP instances from above (with the same implementation on the same machine) by 

about five hours. 

Recall that | | is bounded from above by (
      

 
)         . Indeed, for 

instances 3-22, with randomly generated success probabilities and processing times, the 

actual number of distinct members in | | was always very close to this upper bound, i.e., 

at least 99.8% of this number. In fact, if the numerical accuracy of our calculations was 

unlimited, the number of potential rates should have been, almost surely, exactly 

501,501. However, despite the large number of potentially optimal production rates, the 

CMP is solved for small fractions of these rates. The rest of the candidate rates are 

eliminated using the bounds constructed for a feasible and optimal production rate. 

For instances 1 and 2, where the success probabilities and processing times of all 

machines is identical, the number of distinct, potentially optimal production rates is 1001 

(the number of machines plus one). This is because the production rate dictated by each 

pair of machines is only determined by the number of machines between the two. In 

addition, there is one potential rate determined by a configuration with no QCSs at all.  
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ID 

                                      

Value 
Time 
(sec) 

CMP 
Calls 

CMP 
Share 

Value 
Time 
(sec) 

CMP 
Calls 

CMP 
Share 

1 
197.2 0.6 11 1.1% 2792.0 0.4 6 0.6% 

2 
342.3 5.9 156 15.6% 2902.1 1.4 34 3.4% 

3 
97.3 428.0 11927 2.4% 1541.0 98.0 2730 0.5% 

4 
104.4 386.5 10789 2.2% 1548.2 78.1 2177 0.4% 

5 
98.1 402.6 11250 2.2% 1541.6 70.2 1954 0.4% 

6 
99.3 414.1 11543 2.3% 1542.2 85.6 2385 0.5% 

7 
96.4 418.4 11663 2.3% 1541.6 75.3 2094 0.4% 

8 
111.4 356.3 9933 2.0% 1554.3 74.5 2069 0.4% 

9 
106.8 399.5 11138 2.2% 1549.2 94.9 2640 0.5% 

10 
87.7 449.0 12513 2.5% 1529.6 74.4 2071 0.4% 

11 
102.6 371.6 10344 2.1% 1548.6 61.0 1690 0.3% 

12 
92.3 428.9 11956 2.4% 1535.7 74.1 2063 0.4% 

13 
150.6 1987.6 56992 11.4% 1593.1 169.1 4828 1.0% 

14 
155.2 1971.3 56576 11.3% 1603.5 161.6 4608 0.9% 

15 
154.5 2036.4 58420 11.7% 1599.0 166.2 4737 0.9% 

16 
158.4 1989.2 57023 11.4% 1601.5 173.2 4940 1.0% 

17 
146.8 2209.9 63321 12.7% 1593.5 169.8 4830 1.0% 

18 
141.8 2342.9 67318 13.4% 1585.8 171.7 4884 1.0% 

19 
161.2 2001.5 57364 11.5% 1605.6 165.9 4729 0.9% 

20 
142.0 2198.5 62995 12.6% 1585.6 163.0 4645 0.9% 

21 
161.0 1990.2 57007 11.4% 1605.7 185.7 5297 1.1% 

22 
171.7 1799.7 51466 10.3% 1615.8 162.2 4611 0.9% 

Average  1117.7  7%  112.6  0.7% 
 Table 2: Performances of the PMP algorithm 

The computation times of the 1000 machines problem instances in our benchmark 

set seem satisfactory for most applications. However, in order to test the approximation 

procedure discussed in Section 3, we decided to set the relative error to       (0.001%) 

by rounding the values of the member of   at the sixth digit. 

Table 3 below presents the relative and absolute savings in terms of computation 

times as well as the relative optimality gap for each of our benchmark problem instances. 
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ID 

                                       

Time 

Saving 

(sec.) 

Time 

Saving 

(%) 

Optimality 

Gap 

Time 

Saving 

(sec.) 

Time 

Saving 

(%) 

Optimality 

Gap 

1 0.1 9.6% 0.00010% 0.0 5.3% 0.00010% 

2 0.3 5.3% 0.00039% 0.0 2.3% 0.00028% 

3 72.7 17.0% 0.00016% 38.6 39.4% 0.00037% 

4 56.2 14.5% 0.00049% 23.7 30.3% 0.00009% 

5 55.6 13.8% 0.00084% 20.4 29.1% 0.00068% 

6 65.7 15.9% 0.00067% 28.7 33.5% 0.00047% 

7 62.4 14.9% 0.00038% 23.8 31.6% 0.00036% 

8 52.4 14.7% 0.00060% 23.2 31.2% 0.00079% 

9 69.4 17.4% 0.00022% 35.1 36.9% 0.00075% 

10 66.2 14.7% 0.00017% 20.8 28.0% 0.00028% 

11 47.9 12.9% 0.00051% 15.2 24.9% 0.00011% 

12 61.1 14.2% 0.00039% 20.2 27.3% 0.00068% 

13 1689.5 85.0% 0.00054% 133.5 78.9% 0.00072% 

14 1677.1 85.1% 0.00008% 126.4 78.2% 0.00075% 

15 1750.8 86.0% 0.00021% 133.4 80.3% 0.00059% 

16 1704.3 85.7% 0.00082% 136.6 78.9% 0.00086% 

17 1903.2 86.1% 0.00028% 133.6 78.7% 0.00020% 

18 2032.6 86.8% 0.00083% 137.7 80.2% 0.00028% 

19 1724.5 86.2% 0.00039% 132.1 79.7% 0.00055% 

20 1882.1 85.6% 0.00011% 130.1 79.8% 0.00061% 

21 1710.2 85.9% 0.00001% 148.7 80.1% 0.00016% 

22 1541.6 85.7% 0.00048% 130.5 80.5% 0.00007% 

All 18225.9 74.1% 0.00039% 1592.6 64.3% 0.00044% 

Table 3: Performances of the Approximated PMP algorithm 

It is apparent from Table 3 that the approximation procedure is capable of saving a 

significant share of the computation time in exchange for a compromise of less than 

0.001% in terms of optimality. The relative savings is particularly large in the hardest 

instances where it is most needed. The approximation procedure can be used with hard 

instances if time is a major consideration. Such a case may arise if, for example,  the 

PMP is embedded as a sub-problem in an algorithm that solves a more general problem 

or if it is used to guide on-line decisions in a dynamic environment.  
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It is very likely that the computation time of the PMP algorithm and the 

approximation procedure are sensitive to parameters of the problem such as the success 

probabilities of the operations or the ratios between the production costs, inspection costs, 

revenue, and penalty. However, since we based our numerical experiment on instances 

that are very large compared to serial production lines encountered in the industry, we 

believe that our algorithm demonstrates its applicability to a wide range of real-world 

problem instances.  

6. Work-In-Process in the Production Line 

Until now, we intentionally overlooked the issue of WIP and its interaction with the QCS 

configuration. However, as indicated by Lemma 1, in an optimal solution prescribed by 

the PMP model at least one workstation is a bottleneck. That is, its production (or 

inspection) rate is equal to the arrival rate of the items at its buffer. In such a situation, the 

WIP queue in the buffers in front of the bottleneck workstations may grow indefinitely. 

Therefore, even if the holding cost of WIP per item is small, the total holding costs 

cannot be ignored altogether.  

Despite this shortcoming of the PMP model, we believe that it is useful in 

designing the QCS configuration and deciding upon production rates in many real-world 

cases. In particular, we claim that it is typically possible to operate a serial production 

line with a given QCS configuration very close to its maximum potential production rate 

(dictated by the bottleneck workstations) while keeping the WIP level relatively low. 

Hence, if the value of the optimal solution of the PMP is viewed as a theoretical upper 

bound, it is possible to operate the system with a profit rate that is very close to that 

bound. This statement is proved empirically by an extensive simulation study reported 

below. 

In self-regulated production systems, the arrival of new items at the system is 

dynamically controlled by the operator based on the system’s state. We show that it is 

possible to achieve a high production and profit rate with relatively low WIP by using the 

QCS configuration prescribed by the PMP model and a self-regulating production 

control. For demonstration purposes, we use a simple pull dispatching rule, namely 
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CONWIP. Under CONWIP (COnstant WIP) the total WIP level, including the raw 

material at the first buffer, is kept constant. A new item is dispatched whenever the 

production of an item is completed. The ability of CONWIP to balance production rate 

and WIP level in serial production lines is well known, see for example Spearman et.al. 

(1990) and Masin et. al (1999).  

Our simulation study is based on a set of 576 instances with up to 50 stations each. 

We use twelve settings of processing/inspection times and costs. These settings, 

presented in Table 4, are equivalent to these of our benchmark set in the previous section 

but the success probabilities were reduced to create instances with a substantial number 

of QCSs. Indeed, in the optimal solutions for all the tested instances, the number of 

installed QCSs was 35-50% of the number of machines. For each time/cost combination, 

we created instances with                 and                   with two 

different line lengths, namely,      stations and      stations. 

ID 

Mean 

Processing 

times / item 

Mean Inspection 

Time / item 

Mean 

Processing 

Cost / item 

Mean Inspection 

Cost / item 

Success 

Probability 

Capital Cost / time 

unit 

1      
  

    

       
       

                 
  

     

          

2        
              

                 
         

3-7 

          

  
    

    ∑   

 

     
 

          

  
    

    ∑   

 

     
   

           

  
    

     ∑   

 

     
 

8-

12 

  
    

            

  
    

            

  
    

              

Table 4: Description of the Simulation Study Instances 

The optimal solution of each of the above instances was simulated with six different 

processing/inspection times as listed below: 

 Exponentially distributed times 

 Four lognormal distributions with coefficients of variation (CV) equal to  
 

 
 
 

 
  , 

and 2, i.e., the standard deviation equal to  
 

 
 
 

 
         times the mean 

processing/inspection time. 

 Deterministic times   
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The mean processing/inspection times were the same for all distributions (see Table 4). 

Note that even with the deterministic times, the arrival process at each machine is 

stochastic due to the randomness in the success of each operation and the routing of items 

created by the QCSs.  

Let us denote the number of stations (machines and QCSs) in a given 

configuration by  . Each of the combinations above was simulated with two levels of 

CONWIP, namely,     and    , in order  to explore two extreme candidate values for 

the CONWIP level. Overall, the full factorial simulation experiment consists of  

                                                               

configurations.  

The period until the first     items were produced was considered as warm-up 

time and was eliminated from the estimation of the steady-state performances of each 

configuration. The estimation was then based on 100 blocks of      items each. That is, 

the first block starts when the       item is delivered, the second starts when     

       item is delivered and so on. The simulation was used to estimate the mean profit 

rate in each configuration. This rate is compared to the upper bound determined by the 

value of the optimal solution of the PMP. Note that in a given QCS configuration, the 

production/inspection cost per item is fixed and thus the production rate is proportional to 

profit rate.  

In Tables 5-8, we present the average relative production rates. Each row in these 

tables corresponds to a group of production/inspection time/cost settings as described in 

Table 4. Each column corresponds to one of the above six distribution families. In each 

of the internal cells of these tables, the average profit rate as a fraction of the upper 

bound, derived from the optimal solution value, is presented together with the average 

half-width of a 95% confidence interval for these statistics (in parenthesis). The rates in 

configurations with CONWIP 2 and 10 are separated by a slash. Table 5 and Table 6 

correspond to the 30 machine instances while Table 7 and Table 8 correspond to the 50 

machine instances. Table 5 and Table 7 correspond to the instances with            

     and Table 6 and Table 8 to the instances with          and         .  
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ID 
Deterministic 

 V=0  

Exponential 

 V=1 

Log Normal 

   
 

 
 

Log Normal 

   
 

 
 

Log Normal 

     

Log Normal 

     

1 
99.75% (0.08%) / 

99.72% (0.08%) 

97.09% (0.49%) / 

99.61% (0.61%) 

99.7% (0.19%) / 

99.77% (0.2%) 

99.19% (0.27%) / 

99.78% (0.31%) 

96.56% (0.5%) / 

99.69% (0.61%) 

78.41% (0.72%) / 

98.82% (1.18%) 

2 
99.77% (0.08%) / 

99.88% (0.09%) 

91.35% (0.32%) / 

99.15% (0.69%) 

99.48% (0.17%) / 

99.81% (0.17%) 

98.28% (0.27%) / 

99.88% (0.34%) 

91.44% (0.37%) / 

99.7% (0.64%) 

70.34% (0.63%) / 

95.79% (1.08%) 

3-7 
99.57% (0.1%) / 

99.6% (0.1%) 

94.19% (0.37%) / 

99.65% (0.63%) 

99.63% (0.19%) / 

99.65% (0.18%) 

99.05% (0.31%) / 

99.67% (0.34%) 

93.68% (0.4%) / 

99.51% (0.62%) 

72.29% (0.66%) / 

96.68% (1.3%) 

8-12 
99.82% (0.11%) / 

99.85% (0.1%) 

92.5% (0.36%) / 

99.73% (0.6%) 

99.8% (0.18%) / 

99.89% (0.2%) 

99.1% (0.3%) / 

99.88% (0.34%) 

92.09% (0.37%) / 

99.7% (0.66%) 

70.08% (0.64%) / 

96% (1.21%) 

Table 5: Estimated average production rate relative to the optimal PMP solution for the 30 machine instances, with 
                 when using CONWIP=2/CONWIP=10 

ID 
Deterministic 

 V=0  

Exponential 

 V=1 

Log Normal 

   
 

 
 

Log Normal 

   
 

 
 

Log Normal 

     

Log Normal 

     

1 
99.89% (0.08%) / 

99.86% (0.08%) 

97.23% (0.49%) / 

99.75% (0.61%) 

99.84% (0.19%) / 

99.91% (0.19%) 

99.33% (0.27%) / 

99.92% (0.31%) 

96.7% (0.5%) / 

99.83% (0.61%) 

78.55% (0.72%) / 

98.95% (1.17%) 

2 
99.84% (0.08%) / 

99.95% (0.09%) 

91.42% (0.32%) / 

99.22% (0.69%) 

99.55% (0.16%) / 

99.88% (0.17%) 

98.35% (0.27%) / 

99.95% (0.34%) 

91.52% (0.37%) / 

99.77% (0.64%) 

70.42% (0.63%) / 

95.86% (1.08%) 

3-7 
99.83% (0.1%) / 

99.87% (0.1%) 

94.45% (0.37%) / 

99.91% (0.62%) 

99.9% (0.18%) / 

99.91% (0.18%) 

99.31% (0.31%) / 

99.93% (0.33%) 

93.94% (0.4%) / 

99.77% (0.61%) 

72.56% (0.66%) / 

96.94% (1.29%) 

8-12 
99.93% (0.11%) / 

99.96% (0.1%) 

92.61% (0.36%) / 

99.84% (0.6%) 

99.91% (0.18%) / 

99.99% (0.2%) 

99.21% (0.3%) / 

99.98% (0.34%) 

92.2% (0.37%) / 

99.81% (0.65%) 

70.19% (0.64%) / 

96.1% (1.2%) 

Table 6: Estimated average production rate relative to the optimal PMP solution for the 30 machine instances, with 
                   when using CONWIP=2/CONWIP=10 

ID 
Deterministic 

 V=0  

Exponential 

 V=1 

Log Normal 

   
 

 
 

Log Normal 

   
 

 
 

Log Normal 

     

Log Normal 

     

1 
99.55% (0.12%) / 

99.67% (0.12%) 

94.92% (0.46%) / 

99.02% (0.65%) 

99.6% (0.2%) / 

99.59% (0.18%) 

99.12% (0.31%) / 

99.53% (0.36%) 

94.49% (0.45%) / 

99.29% (0.62%) 

73.48% (0.67%) / 

96.95% (1.28%) 

2 
99.66% (0.19%) / 

99.75% (0.17%) 

89.34% (0.38%) / 

99.17% (0.64%) 

99.19% (0.22%) / 

99.84% (0.22%) 

97.69% (0.29%) / 

99.35% (0.31%) 

88.66% (0.38%) / 

99.1% (0.66%) 

65.52% (0.59%) / 

93.68% (1.29%) 

3-7 
99.27% (0.11%) / 

99.28% (0.1%) 

94.36% (0.38%) / 

99.29% (0.64%) 

99.34% (0.18%) / 

99.33% (0.18%) 

99.06% (0.32%) / 

99.28% (0.33%) 

93.89% (0.38%) / 

99.04% (0.67%) 

71.23% (0.68%) / 

97.55% (1.42%) 

8-12 
99.78% (0.11%) / 

99.73% (0.11%) 

94.09% (0.35%) / 

99.6% (0.64%) 

99.74% (0.19%) / 

99.77% (0.2%) 

99.52% (0.32%) / 

99.71% (0.35%) 

93.47% (0.35%) / 

99.76% (0.7%) 

70.64% (0.66%) / 

97.14% (1.4%) 

Table 7: Estimated average production rate relative to the optimal PMP solution for the 50 machine instances, with 

                 when using CONWIP=2/CONWIP=10 
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ID 
Deterministic 

 V=0  

Exponential 

 V=1 

Log Normal 

   
 

 
 

Log Normal 

   
 

 
 

Log Normal 

     

Log Normal 

     

1 
99.78% (0.12%) / 

99.89% (0.12%) 

95.14% (0.46%) / 

99.25% (0.64%) 

99.83% (0.19%) / 

99.82% (0.18%) 

99.34% (0.31%) / 

99.76% (0.36%) 

94.72% (0.46%) / 

99.51% (0.61%) 

73.71% (0.67%) / 

97.17% (1.27%) 

2 
99.8% (0.19%) / 

99.9% (0.17%) 

89.48% (0.38%) / 

99.31% (0.63%) 

99.33% (0.22%) / 

99.98% (0.22%) 

97.83% (0.29%) / 

99.49% (0.31%) 

88.8% (0.38%) / 

99.25% (0.65%) 

65.67% (0.59%) / 

93.81% (1.28%) 

3-7 
99.74% (0.11%) / 

99.75% (0.1%) 

94.83% (0.37%) / 

99.76% (0.63%) 

99.81% (0.18%) / 

99.8% (0.18%) 

99.53% (0.31%) / 

99.75% (0.32%) 

94.36% (0.37%) / 

99.51% (0.66%) 

71.7% (0.67%) / 

98% (1.39%) 

8-12 
99.94% (0.11%) / 

99.9% (0.1%) 

94.26% (0.34%) / 

99.77% (0.63%) 

99.91% (0.19%) / 

99.94% (0.19%) 

99.68% (0.32%) / 

99.88% (0.34%) 

93.64% (0.34%) / 

99.93% (0.69%) 

70.81% (0.66%) / 

97.3% (1.37%) 

Table 8: Estimated average production rate relative to the optimal PMP solution for the 50 machine instances, with 
                   when using CONWIP=2/CONWIP=10 

It is apparent from the results presented in Tables 5-8 that the profit obtained from 

both CONWIP levels is typically close to the upper bound obtained by the optimal 

solutions of the PMP model. As expected, the larger the constant WIP level, the closer 

the profit rate under CONWIP is to the upper bound. Even for the extremely noisy 

processing/inspection time (     ),  the profit rates were more than     of the upper 

bound in all the 48 instances tested when the CONWIP level was 10. 

The values of         as well as the number of machines     seems to bear no 

influence on the ratio between the actual profit rate under CONWIP and the theoretical 

upper bound. To test this hypothesis, we ran a linear regression with this ratio as a 

dependent variable and with    (the coefficient of variation), CONWIP (the CONWIP 

level), and   and    as independent variables. Each point in this regression model is the 

estimated ratio for one of the 576 tested configurations. The results indicated that both 

CV and CONWIP are statistically significant in this model                 while 

   and   are not (             and              respectivly). Therefore, we 

tend to believe that our finding above holds regardless of the number of stations in the 

production line and the final product price. As expected, the coefficient of the 

independent variable    in the regression model is negative while the coefficient of the 

CONWIP level is positive.  

In conclusion, our simulation study showed that if the system is controlled by a 

dynamic dispatching policy, such as CONWIP, it yields provably near-optimal profit 

rates. When the variability of the processing time is not extremely high, such dispatching 

policies can work with a reasonably low level of WIP. 
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7. Managerial Insights  

In this section we employ the devised algorithm to derive some insights about the nature 

of the optimal inspection effort allocation and its relation with various key parameters of 

the production line. In particular we examine the effects of the success probabilities, the 

processing time and cost, and the inspection time and cost (where QCSs are installed) on 

the QCS configuration and on the expected profit. These insights are derived based on 

experimentation with four 100-machine instances with characteristics as described in 

Table 9. We believe that these instances represent a variety of situations. In instances A 

and C the QCS cost and duration is related to the length of the inspected segment while in 

B and D the inspection cost is fixed. In instances A and B all the machines and QCSs are 

identical while in C and D their characteristics are drawn from some probability 

distribution as described in Table 9. We refer to the values in the table as base values and 

we will check how the QCS configuration is affected when these values are changed. 

 

ID 

Mean 

Processing 

times / item 

   

Mean Inspection 

Time / item 

  
     

Mean 

Processing 

Cost / item 

   

Mean Inspection 

Cost / item 

  
     

Success 

Probability 

   

Capital Cost / time 

unit 

  
     

A 
  

                 √   
   

       

         

B   
                 

C 

       

         

    ∑   

 

     
 

          

         

    ∑   

 

     
 

             

    ∑   

 

     
 

D                                    

Table 9: Description of the four 100-machine instances 

For each of the four instances we solved the PMP numerous times in order to check 

the effects of changes to each of the six parameters in the table. We will present here only 

a sample of the obtained results. A Matlab routine that reproduces the complete set of 
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results is available as an electronic companion to this paper. Our discussion below is 

based on all of these results. 

In order to check the effect of the success probabilities (of the operations) we 

solved the problems with various probabilities ranging from 0.9 to 0.995. The obtained 

configurations (optimal solutions) of instance A are depicted in Figure 2 below where 

each line represents the optimal configuration relative to a given success probability (as 

shown in the vertical axis of the graph). Each dot represents the location of a QCS (as 

shown on the horizontal axis). 

 

 

Figure 2: The optimal QCS configuration of Instance A with various success probabilities 

As expected, one can see that the density of the QCS decreases as the success 

probability approaches one. The configuration, however, seems robust to slight changes 

in the success probabilities of the machines, and some locations are attractive enough to 

host a QCS for the entire range of the checked probabilities.  In Figure 3, we plot the 

profit rate obtained from the optimal solution against the successes probabilities. It can be 

observed that the effect is fairly dramatic. Indeed, increasing the reliability of the process 

not only allows saving on rework and inspection effort, but it also allows increasing the 

production rate leading to an increase in the profit per time-unit. An optimal 

configuration of QCS only partially mitigates the negative effects of poor quality. 
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Figure 3: The optimal profit obtained from Instance A with various success probabilities 

  

Next we examine the effect that the machines’ processing times have on the 

optimal QCS configuration. In Figure 4, each line represents the optimal QCS 

configuration that corresponds to the base processing time multiplied by a factor as given 

in the vertical axis. We observe that the number of QCSs in the optimal configuration is 

decreased as the processing time increases. This phenomenon can be attributed to the fact 

that the reduction in production rate imposed by the slower machines increases the 

relative weight of the fixed inspection cost   . Indeed, since the utilization of the QCSs 

decreases, the mean inspection cost per item increases. When the processing time is long 

enough, it becomes impossible to make a positive profit from the system and the optimal 

solution is not to produce at all; therefore, no QCSs are installed. Nevertheless, as with 

the success probability, it seems that the optimal QCS configuration is fairly robust to 

small changes in the processing times and many QCS locations remained unchanged or 

changed slightly when this parameter was increased. The expected profit is plotted versus 

the processing time on the right hand side of the figure. It appears that the profit rate 

decreases super-linearly since it is affected by both the reduction in the production rate 

and the higher average inspection cost per item.  
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Figure 4: The optimal QCS configuration and profit with various processing times (Instance A) 

  

 In Figure 5, the effect of the inspection time on the QCS configuration and profits 

is examined. Here the results are somewhat intriguing: in instance A, increasing all the 

inspection times by some common factor results in an increase in the density of QCSs 

along the line. This is because in this instance, the inspection time is proportional to the 

length of the inspected segment. Thus, in order to avoid situations where the QCSs 

become bottlenecks and slow down the line, it is better to use more QCSs that cover 

shorter segments, even at the expense of a higher inspection effort.  At some point, the 

optimal solution is to install a QCS after each machine; from this point on the production 

rate is dictated by the inspection rate. With the inspection cost structure of Instance A, it 

is optimal to stick with this configuration throughout the rest of the test range. A similar 

phenomenon is observed in Instance C where the inspection times are also related to the 

length of the segment. However, in instances B and D, the effect of increasing the 

inspection time is the opposite - once the QCSs become bottlenecks, the optimal number 

of QCSs begins to decrease.    
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Figure 5: The optimal QCS configuration and profit with various inspection times (Instance A) 

 

In  figures Figure 6, Figure 7, Figure 8 we see that increasing the processing costs 

or inspection costs proportionally does not affect the optimal QCS configuration as long 

as it still possible to operate the system profitably. We note that this phenomenon is 

directly related to the cost structure of Instance A where the inspection costs are 

proportional to the length of the segment. In this case, no savings can be gained from 

switching to a sparser QCS configuration. In Figure 9, we show the same results for 

instance B where the inspection costs are fixed regardless of the length of the inspected 

segment. Here, an increase in the inspection cost makes inspection effort less attractive. 

As a result, the number of installed QCS is gradually decreased as the inspection costs 

increase. However, even in this case, the processing costs still do not affect the optimal 

QCS configuration significantly as long as it is still profitable to produce (see first row of 

Figure 9).  This can be explained by the fact that the savings that could be obtained by 

reducing the rework and processing cost by installing more QCSs is canceled by the 

additional inspection cost per item due to the reduction in the production rate. We note 

that a similar phenomenon is observed in instances C and D (with random parameters). In 

these instances the number of QCSs remains more or less constant as the processing cost 

is increased, however their location changes.  This is visualized in Figure 10. 
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Figure 6: The optimal QCS configuration and profit with various processing costs (Instance A) 

 

  

Figure 7: The optimal QCS configuration and profit with various variable inspection costs (Instance A) 

 

  

Figure 8: The optimal QCS configuration and profit with various fixed inspection costs (Instance A) 
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Figure 9: The optimal QCS configuration and profit with various processing and inspection costs (Instance B) 
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Figure 10: The optimal QCS configuration with various processing costs (Instance C) 

 

 

 

8. Conclusions and further research 

In this study, we formulated a profit maximization problem of a manufacturing system as 

a series of shortest path problems. We believe that this methodology may be useful for 

other problems that can be decomposed in a similar way. Specifically, good candidates 

for this approach are problems that involve allocating resources along a production line, 

where the allocation affects the potential rate of the line in a complex way. 

Quality control systems in production systems, such as those we find at 

semiconductors fabrication facilities, may be much more complex than the simple serial 

line model presented in this paper and indeed further study is needed to provide a 

complete solution for their optimal design problem. However, we believe that the optimal 

solution of our simplistic model can provide initial guidelines for the designers of these 

lines especially where the number of potential locations for QCSs is large and it is 

impractical to test or simulate significant subsets of the feasible solutions. 

Next, we discuss several problems for further research. Penn and Raviv (2008) 

incorporated holding costs into a QCS configuration model, where nonconforming items 

are scrapped. Further study should explore a similar model in the online rework setting 

studied here.  

In practice, many production lines are re-entrant, i.e., jobs may visit some machines 

several times. In this setting, the workload on each station may be affected by several 
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operations that may belong to several different segments (inspection-wise).  Hence, the 

decomposition used in this study cannot be directly applied and a different approach is 

called for. 

Many authors, e.g., Yum and McDowell (1987), considered a model where 

inspection errors may occur. However, no efficient solution approach was introduced for 

the inspection allocation problem in this setting. We believe that the methodology 

presented here may serve as a vehicle for finding efficient approximation algorithms for 

such problems. 

 

Appendix – List of Notation 

  Arrival rate of item to the system / production rate in a stable system 

   Variable production cost per item on    

  
     Variable inspection cost per item on     assuming the previous installed QCS 

is    .   
     is the inspection cost  on     assuming it is the first QCS in the 

line. 

       Total production, inspection and penalty cost per item incurred by the segment 

               

  
     Fixed cost per unit of time for installation of     assuming the previous 

installed QCS is     

   The location of the QCS that precedes    in a given configuration (or 0 there is 

no such QCS).      is the location of the last QCS in the line. 

   Machine   

  Number of machines in the line 

   Success probability of the  operation on machine    

     Success probability on all the machines           

    Quality control station located after     

rB Penalty incurred by a nonconforming item delivered by the system 
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rG Market price of a finished product 

       Maximum throughput of the segment               

   Mean processing time of operations on machine     

  
     Mean processing time of inspection task on     assuming the previous 

installed QCS is     

  The set of installed QCSs in a particular solution  

       The optimal QCS configuration for production rate   

   The ratio between the rework processing time and the “first time” processing 

time of an operation on    

   The ratio between the rework cost and the “first time” cost of an operation on 
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