
MANAGEMENT SCIENCE
Vol. 51, No. 4, April 2005, pp. 655–661
issn 0025-1909 �eissn 1526-5501 �05 �5104 �0655

informs ®

doi 10.1287/mnsc.1040.0290
©2005 INFORMS

Optimal Allocation of Proposals to Reviewers to
Facilitate Effective Ranking

Wade D. Cook
Schulich School of Business, York University, Toronto, Ontario M3J 1P3, Canada, wcook@schulich.yorku.ca

Boaz Golany
Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology,

Haifa 32000, Israel, golany@ie.technion.ac.il

Moshe Kress
Center for Military Analyses, POB 2250, Haifa 31021, Israel, and Operations Research Department,

Naval Postgraduate School, Monterey, California 93943, mkress@ie.technion.ac.il

Michal Penn, Tal Raviv
Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 32000, Israel

{mpenn@ie.technion.ac.il, tal.raviv@sauder.ubc.ca}
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1. Introduction
A large portion of current academic research is
sponsored through various agencies and funds with
specific interests in different areas of research. The
sponsorship process typically starts with a call for
proposals (CFP), which is distributed to the relevant
community. Proposals are then submitted according
to guidelines that appeared in the CFP. These propos-
als are sent for a peer review that serves as the core of
the entire process. The referees who review the pro-
posals are usually provided with some instructions
on the norms and criteria that should be applied to
gauge the quality of the submitted proposals. In most
cases, each referee is asked to review a subset of the
submitted proposals. (In extreme cases, each referee
reviews a single proposal.) The reviews are collected
by the body that issued the CFP, which uses some
aggregation scheme to transform the individual eval-
uations into a single overall ranking.
The manner in which preferences over objects that

need to be ranked (proposals, in our case) are expre-
ssed depends on the level of possible quantification.
In some situations, cardinal or quantitative data on

each of various attributes of the objects can be spec-
ified. In many practical applications, however, it is
not possible to explicitly quantify the objects’ values
in a full cardinal format, and one must settle for the
less-specific ordinal specification. In some situations,
one can specify a complete “ranking” of N objects on
an ordinal scale in vector format A= �a1� a2� � � � � aN ��
where ai ∈ 	1�2� � � � �N 
 is the rank position occupied
by object i� When such a ranking Ak is supplied by
each member k of a committee of K members, one can
define a consensus of opinions in several ways (e.g.,
the median ranking as discussed in Cook and Seiford
1978). From a practical point of view, if N is large, a
full ranking may prove difficult, and in many applica-
tions analysts often choose to use a Likert scale (typi-
cally five points) as the basis for eliciting preferences
(see, e.g., Garg 1996).
One very common format for expressing preferen-

ces is to use pairwise comparisons. This mode of exp-
ression forces one to make a direct choice of one object
over another when comparing two objects, rather than
requiring one to compare all objects simultaneously. It
is particularly attractive when a comparison of all the
objects is not possible and only a partial ranking may

655



Cook et al.: Optimal Allocation of Proposals to Reviewers to Facilitate Effective Ranking
656 Management Science 51(4), pp. 655–661, © 2005 INFORMS

be supplied. In the case that an individual voter or
committee member can only express preferences con-
cerning a proper subset of the objects, then a partial
ranking is the most information that this person can
provide. In such a situation, vector representations, as
discussed above, make little practical sense, and one
must then default to pairwise comparisons.
Most peer reviews to date were based on cardi-

nal rankings. However, some researchers (mainly in
the social sciences and decision-analysis areas) have
recently started to raise questions on the validity of
the outcomes of such processes. In particular, several
studies were devoted to analyzing the reliability of
and the possible existence of various biases in such
peer review processes (e.g., Cicchetti 1991, Hodgson
1995, Campanario 1998, Jayasinghe et al. 2001). They
found low degrees of agreement among referees and
various kinds of biases. Other studies (e.g., Dirk 1999)
focused on the criteria that guide the referees’ work
and reported on a common language—a certain set of
criteria that referees tend to use to evaluate research
quality. However, as emphasized by Langfeldt (2001),
these criteria are often interpreted or operationalized
differently by various reviewers. Techniques that gen-
erate ordinal rankings on the basis of pairwise eval-
uations may provide some remedy to these difficul-
ties because they are more straightforward and require
less effort from the reviewers. As an illustration, con-
sider two scenarios: (1) an evaluator who is asked to
estimate the length of a single stick and (2) an eval-
uator who is asked to estimate which of two sticks
is longer. Obviously, cardinal rankings are superior to
ordinal rankings as they provide more refined infor-
mation. The trouble is that sometimes the more refined
information is practically very difficult to attain (e.g.,
measure the length of the single stick without any
ruler at hand). Additionally, with cardinal rankings we
are more exposed to biases that may stem from the
“generosity” of the evaluators assigned to particular
proposals. Suppose that we have three proposals, A,
B, and C and two reviewers, R1 and R2. Proposals A
and B are assigned to R1. Assume that R1, who tends
to be less than generous in evaluations, prefers A over
B and rates them (in a cardinal 1–10 scale) as 6 and
5, respectively. R2, who tends to be much more gen-
erous in ratings, is assigned proposals B and C. This
reviewer prefers B over C and rates them as 9 and
6.5, respectively. Clearly, the ranking A � B � C can
be accepted by both reviewers, but by ranking accord-
ing to the average cardinal rates, we obtain B�C�A.
Because the number of evaluators for each proposal
is not expected to be large, the likelihood that such
phenomena will occur is not insignificant. Hence, in
this paper we shall consider peer reviews in which
reviewers are asked to provide ordinal, rather than
cardinal, rankings of proposals.

This paper focuses on an important operational
aspect of the peer review process that has been mostly
neglected until now—the method by which propos-
als are assigned to specific referees. Referees are typi-
cally characterized according to their particular areas
of expertise. Therefore, to obtain the most profes-
sional evaluation, some matching procedure should
be implemented that will assign each proposal to the
referee(s) that are most qualified to review it. How-
ever, the referees are also associated with (usually
self-imposed) limits on the number of proposals they
are willing to review or capable of reviewing within
the specified time window. In general, one cannot
expect the distribution of expertise areas within the
pool of available referees to be uniform, because at
any given period there are subareas that are more
“popular” than others. Thus, implementation of an
assignment procedure that is purely based on match-
ing considerations is likely to lead to segregation of
the proposals into subsets (in the extreme case, each
proposal is a subset in its own right) where there
is no overlap in the referees that review proposals
across the different subsets. When this happens under
ordinal-ranking settings, it severely restricts the valid-
ity of the overall ranking that will eventually be
generated from the collection of individual referees’
evaluation. The reason is quite simple—each partial
ranking is limited to its relevant subset of propos-
als, and if such a subset has no overlap with another
subset, we have no basis for comparison between
them. For example, consider a subset of three excel-
lent proposals sent to reviewers A and B, who eval-
uate them independently. Both reviewers rank order
these proposals in decreasing order P1, P2, and P3.
Another subset of four rather mediocre proposals is
sent to reviewers C, D, and E, who rank them (again
in decreasing order) P4, P5, P6, and P7. Although the
evaluations within each group of referees were con-
sistent, the fact that there is no overlap between the
two groups leaves the review board with an open
question—how to combine the two separate rankings
into an overall ranking.
The need to view proposals’ evaluation from the

perspective of partial rankings highlights the require-
ment for overlap among the subsets of proposals
assigned to the various reviewers. Pairwise compari-
son data are specified in the form of binary preference
matrices. This will mean that lack of overlap among
the proposal subsets will result in zero entries (holes)
in the matrix structure. In such cases, any final overall
ranking is questionable.
The problem of aggregating individual rankings to

create an overall ranking representative of the group
is of longstanding interest in group decision making.
It was first examined by Kemeny and Snell (1962) and
later by Bogart (1975), who extended the structure to
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partial orders. In particular, the problem of consensus
ranking when preferences are represented in vector
(rank order) format has been investigated extensively
by many researchers, including Cook and Seiford
(1978), Kirkwood and Sarin (1985), and Cook and
Kress (1991), and various solution methods based on
distance functions have been studied. Hence, we will
not address this problem in the current paper.
The rest of this paper is organized as follows.

In §2, we model the allocation problem through a set-
covering (SC) formulation and explain how it gener-
ates allocations with the desired maximum overlap.
But there might be situations with large numbers of
proposals and reviewers where the SC formulation
may become computationally intractable. Hence, we
present and demonstrate a heuristic algorithm, based
on “greedy” principles, which can be employed with-
out difficulty even for very large problems. In §3, we
report on a large set of numerical examples used to
evaluate the exact and heuristic procedures proposed
earlier. Section 4 concludes the paper.

2. Procedures for Allocating
Proposals to Referees

Following the rationale given in §1, we seek an allo-
cation of proposals to reviewers that uses the max-
imum available reviewing capacity while obtaining
the maximum possible overlap in the evaluations.
Our quantification of the term “overlap” is based on
a pairwise perspective. Given N proposals, there
are

(
N
2

)
pairs. To avoid allocations that lead to mutu-

ally exclusive subsets of proposals, it is desirable
that each pair be evaluated by at least one reviewer.
Define E = �e1� e2� � � �� as the vector of pair allocations,
where eh, h= 1�2�3� � � � denotes the number of pairs
evaluated by at least h reviewers. First, we prefer,
when possible, to get allocation solutions where each
and every pair is evaluated by at least one reviewer.
Furthermore, for h = 1�2� � � � � our objective is to
obtain allocations that are as balanced as possible.
That is, we prefer solutions where each of the pairs
is evaluated by about the same number of reviewers.
Consequently, our objective is to maximize the uti-
lization of the reviewers’ capacity through a weighted
number of pair allocations where the weights ensure
a lexicographic minimization of the pair-allocations
vector. This motivation can be demonstrated through
the following illustrative example. Suppose that we
have to allocate four proposals to three reviewers, and
each reviewer is capable of reviewing three propos-
als (	1�2�4
, 	2�3�4
, and 	1�3�4
, respectively). But
each reviewer is willing to review only two propos-
als. Allocating proposals 	2�4
, 	2�4
, and 	3�4
 to the
three reviewers, respectively, yields a pair-allocations
vector E = �2�1�0�0� � � ��. On the other hand, the allo-
cation 	1�2
, 	2�4
, and 	3�4
 would yield a pair-

allocations vector E = �3�0�0� � � ��, which is clearly
preferred to the previous solution.

2.1. Set-Covering Integer-Programming
Formulation

Let uk be the number of proposals that referee k is
willing to review. We assume that uk is smaller than or
equal to the number of proposals that referee k is qual-
ified to review. Clearly, in any optimal solution each
reviewer is assigned uk proposals. We associate a col-
lection �k of proposal subsets for each reviewer. Each
member I ∈ �k contains uk proposals that reviewer k
is qualified to review. Our aim is to select, for each
referee k, a single member of �k so as to maximize
the covering of the pairs 	p� q
. Before presenting our
set-covering binary integer-programming formulation
(SCIP), some additional notations are needed.

Variables
xI
k A binary variable whose value is 1 if referee k
reviews the proposals according to subset I ∈�k,
and 0 otherwise.

thpq A binary variable whose value is 1 if the number
of referees that review the pair of proposals 	p� q

is exactly h.

Parameters
CI

kp An indicator whose value is 1 if the combination
of referee k and proposal p satisfy p ∈ I for I ∈�k,
and 0 otherwise.

Wh A weight associated with “level” h. A selection
of values for these weights that ensures a lexico-
graphic preference structure is discussed in
Proposition 2.1 below.

Tpq The number of referees capable of reviewing the
pair of proposals 	p� q
, �p �= q�.

H The collection of all pairs of proposals 	p� q
,
�p �= q� for which there exists at least one referee
who is qualified to review both proposals.

We now present the binary integer-programming
formulation of the problem:

(SCIP) max
∑

	p� q
∈H

Tpq∑

h=1
Wh · thpq� (1)

such that
K∑

k=1

∑

I∈�k

CI
kp ·CI

kq · xI
k ≥

Tpq∑

h=1
h · thpq ∀	p� q
 ∈H� (2)

∑

I∈�k

xI
k = 1� k= 1� � � � �K� (3)

Tpq∑

h=1
thpq ≤ 1 ∀	p� q
 ∈H� (4)

xI
k� t

h
pq ∈ 	0�1
� (5)

The objective (1) maximizes the weighted sum of the
thpq indicators. Note that h= 0 is excluded because W 0
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is set to zero as explained in Proposition 2.1 below.
The set of constraints (2), one for each pair, coupled
with constraints (3) and (4), force the implication that
thpq = 1 means that h is the number of referees assigned
to review the pair of proposals 	p� q
. The set of con-
straints (3), one for each referee, ensures that exactly
one subset I is chosen for each referee. Constraints (4),
one for each pair of proposals, enforce that exactly one
value of h is associated with each pair (strong inequal-
ity means that h= 0 is chosen). Finally, constraints (5)
define the variables.
The proposition below states that an appropriate

selection of the weights leads to a lexicographic min-
imization of the pair-allocations vector E.

Proposition 2.1. If the weights Wh are selected as
positive increasing series with decreasing difference series,
that is, 0<W 1 <W 2 < · · · and Wh−Wh−1 >Wh+1−Wh

for all h ≥ 2, then SCIP yields an assignment that mini-
mizes the pair-allocations vector by lexicographic order.

Proof. First note that the objective function value
(1) is uniquely determined by the pair-allocations vec-
tor E as

∑
h�W

h −Wh−1�eh (with the convention that
W 0 ≡ 0). Consider two assignments resulting in E
and F vectors and assume that E �lex F . That is, there
is some t such that eh = fh for all h< t and et > ft . Our
claim follows from the fact that

∑
h�W

h −Wh−1�eh >∑
h�W

h −Wh−1�fh. To prove our claim, it is enough to
show that

∑

h≥t

�Wh −Wh−1�eh >
∑

h≥t

�Wh −Wh−1�fh (6)

that is,

�W t −Wt−1��et − ft� >
∑

h≥t+1
�Wh −Wh−1��fh − eh��

Now, by the way we selected Wh, we have that
�Wh −Wh−1� < �W t −Wt−1� for all h > t and so it is
enough to show that

�et − ft�≥
∑

h≥t+1
�fh − eh�� (7)

But (7) always holds (as equality) by the facts
∑

h eh =∑
h fh =

∑
k

(
uk

2

)≡ constant and eh = fh for all h< t. �

An example of a series that meets the conditions of
Proposition 2.1 is the harmonic series Wh =∑h

i=1�1/i�.
In many cases, it is sufficient to define the deci-

sion variable thpq only for a few small values of h. This
is because optimal solutions are approximately bal-
anced, so the coverage of each pair is likely to be
much smaller than Tpq . Moreover, if one prefers odd
numbers of reviewers to be allocated for the proposal
pairs to eliminate ties, thpq can be defined only for odd
values of h. By doing this, it is possible to reduce the
dimension of our integer program.
Other refinements are possible. Suppose that there

are many pairs for which there is not a single ref-
eree who can review both proposals. In this case, we

might like to ensure, as a secondary preference, that
we “cover” the relations between the two parties in
the pair through a third party (i.e., rely on the tran-
sitive rule). However, this may lead to a rather com-
plicated formulation with many more variables and
constraints, which would be significantly harder to
solve.
Our numerical experiments indicate that the SCIP

formulation can be solved to optimality for small to
medium problems (see §3). However, larger instances,
and in particular instances with large values of uk,
are more difficult to solve. The difficulty arises from
the fact that the number of possible combinations for
reviewer k who is qualified to review nk proposals
and willing to review uk proposals is

(
nk

uk

)
. Thus, the

number of xI
k variables

(∑K
k=1

(
nk

uk

))
may explode.

2.2. Heuristic (Greedy) Procedure
The basic principle of the heuristic procedure is to
identify in each step a pair of proposals with the
largest priority to be assigned and assign it (or at least
one of its members) to the reviewer with the largest
reviewing capacity from the group of reviewers who
can review the said pair. The initial assignment prior-
ity for each pair is determined by Tpq—the larger the
available number of reviewers that can review it, the
smaller the priority is. Then, in each step, the priority
is updated according to the number of reviewers who
have already been assigned to the pair (or to one of
its members).
To run the heuristic, we need to define the outcome

measures:

npq The number of reviewers assigned to review
both p and q.

np−q The number of reviewers who were assigned
to review proposal p, were also qualified to
review proposal q, have not yet exhausted their
uk capacity, but were not assigned to review
proposal q.

The purpose of these outcome measures is to
update the weights assigned to the pairs of proposals
during the assignment process. The logic that under-
lines the specific indexing rule we use here to update
the weights (see the prioritization step below) is as
follows. The initial value for each weight is Tpq . Pairs
with larger Tpq values are assigned higher weights,
which means that there is a low priority to assign
them to reviewers. As long as p and q were not
assigned to the same referees, npq remains zero and
the weight is not updated. When npq is positive, the
weight is increased by 2 · npq , where the coefficient 2
reflects that the “worth” of each additional reviewer
assigned to review the pair pq is double that of an
additional reviewer who is capable of reviewing the
pair. When npq is positive, we also account for indirect
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comparisons between p and q. This is done through
the square root of the product np−q · nq−p, where the
square root function “compensates” for the product
of the two relevant outcome measures, thus mak-
ing their joint effect similar to that of npq . For exam-
ple, suppose we start with Tpq = 4; consequently, the
weight Wpq is also 4. Then, we assign both propos-
als to a certain reviewer, making npq = 1 and, conse-
quently, Wpq = 12. Later, we make other assignments
that lead to np−q = nq−p = 2, causing the weight value
to become Wpq = 44.
Part of the heuristic nature of the procedure stems

from the fact that the measures np−q and nq−p pro-
vide only an indication of possible indirect compari-
son. Assume that one of the reviewers who reviews p
also reviews another proposal g. If one of the review-
ers who reviews q also reviews g, then we have an
indirect comparison. But this is not always the case.
Finally, we note that there could be many other pri-
ority rules that one might use to satisfy the desired
qualitative property of reducing a pair’s priority
as the number of direct and indirect comparisons
increase.
The steps of the heuristic procedure are given

below.
1. Prioritization of proposals

(i) Compute for each pair 	p� q
 a weight Wpq

as follows:

Wpq = Tpq · �1+ 2 ·npq · �1+ 2 ·√np−q ·nq−p���

(ii) Order the pairs in a nondecreasing order of
Wpq . Break ties arbitrarily.

2. Assignment of reviewers
(i) Choose the first pair in the ordered list. If

you encounter a pair for which there is no
available referee, skip it.

(ii) Select the referee with the largest uk out
of the referees capable of reviewing the
selected pair. Assign both proposals of this
pair to this referee and update the relevant
uk value.

3. Termination test
(i) Decrease the number of proposals that the

selected referee can read by either one or
two (depending if both proposals were new
to him).

(ii) If there are no more available referees (i.e.,
uk = 0 for all k), stop.

(iii) Otherwise, return to Step 1.
An illustrative example of the heuristic procedure is
given in the appendix.

3. Numerical Experiments
In this section, we present some numerical ex-
periments to demonstrate the applicability of the pro-
posed procedures. Our testing platform was a Pen-
tium 4, 2 GHz with 512 MB RAM, running under

Table 1 Four Classes of Test Problems

Class No. of proposals No. of referees uk P �Akp = 1�

A 20 40 �3	4	5
 0�4
B 20 50 �3	4	5
 0�3
C 30 60 �3	4	5
 0�3
D 40 80 �3	4
 0�25

Windows XP. To demonstrate the effectiveness (in
terms of solution quality) and efficiency (in terms of
computational times) of the two methods proposed
for the assignment of proposals to reviewers, we con-
structed four classes of test problems with differ-
ent numbers of reviewers, proposals, and reviewers’
capacity (Table 1). The capacity of each reviewer was
randomly drawn from the set specified in column uk.
The qualification of each reviewer with respect to each
proposal was determined by a Bernoulli random vari-
able with probability as specified in the far right col-
umn of the table (where Akp = 1 if referee k is capable
of reviewing proposal p, and 0 otherwise). For each
class we generated 25 test problems.1

The heuristic algorithm was implemented in Mat-
lab 6.1. The SCIP program was solved by CPLEX 8.0
on the same computer. The time limit was set to 30
minutes and the relative optimality tolerance was set
to 10−5. Solutions within this relative gap were con-
sidered optimal. The heuristic algorithm has always
reached a solution in up to 160 seconds (even for the
largest problems).2

The first column of Table 2 presents the percent-
age of the problems that were solved to optimality
(feasibility in brackets) within the time limit (30 min-
utes). Note that only in group C we fail to solve
two problems (out of the 25). These two problems
were excluded from the statistics reported in the other
columns. The average optimality gaps presented in
the second column were calculated over all the prob-
lems for which a feasible solution was obtained. The
value in brackets is the maximum optimality gap over
all the 25 problems of the class. We used the harmonic
series as weights for our mixed integer programming
(MIP) formulation.
In the forth and sixth columns we present the aver-

age number of uncovered pairs and their share of the
total number of proposal pairs (in parentheses) for
both the MIP and the heuristic procedures. In the fifth
and seventh columns we present the average number
of proposals that were covered by at least one, two,
three, and four reviewers, respectively. The average

1 Our test data along with the Matlab program that generates it and
the raw results are available at http://iew3.technion.ac.il/Home/
Users/golany/Download.
2 We believe that this time could be dramatically shortened if the
program was written in a compiled language such as C.
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Table 2 Results of the Numerical Experiment

SCIP formulation Heuristic

% solved to optimality Average (max) Uncovered Covered Uncovered Covered
Class (feasibility) optimality gap pairs pairs �E� pairs pairs �E�

A 95% (100%) 0.04% (0.55%) 0 (0%) �190	61	0	0� 18 (9%) �172	92	14	2	0�
B 90% (100%) 0.00% (0.01%) 2 (1%) �188	98	5	0� 7 (4%) �183	81	21	4	1�
C 10% (95%) 4.28% (12.84%) 81 (19%) �354	16	0	0� 134 (31%) �301	61	9	1	0�
D 100% (100%) 0.00% (0.00%) 423 (54%) �357	0	0	0� 457 (59%) �323	30	3	0	0�

lexicographic advantage of the optimal solution over
the heuristic one is quite evident. Also, we note that
in both methods and in virtually all our test prob-
lems, no proposal was reviewed by more than four
reviewers.
The results demonstrate the usefulness of the

integer-programming formulation for fairly large
problems with up to 40 proposals and 80 referees, pro-
viding the number of possible assignments for each
individual reviewer is not too large. Whenever the
integer-programming formulation is able to produce
a feasible solution within the time limitation, it is
significantly superior to the solutions derived by the
heuristic method, even when the optimality gap of
the obtained solution is quite large. Nevertheless, the
heuristic method is important for at least two rea-
sons: (1) It is capable of quickly delivering a solution
for large problems in which the integer-programming
formulation fails to find a feasible solution in reason-
able time, and (2) the feasible solutions it generates
might serve as initial upper bounds to enhance the
performance of the MIP solver.

4. Conclusions
The process of reviewing, evaluating, and finally
ranking research or research-related manuscripts (e.g.,
submissions to academic competitions or research
proposals) is an integral part of academia. This pro-
cess is based on peer review by researchers that usu-
ally perform this task on a voluntary basis. In many
cases, the submissions are numerous and diverse in
their subject topics and therefore require a large and
diversified group of reviewers or judges. An impor-
tant question in this context is how to assign the
manuscripts to the various reviewers in the most
effective and efficient way, considering their areas of
expertise, their academic capabilities, and the num-
ber of manuscripts each reviewer is willing to review.
Arguably, one cannot always expect that the mix of
submitted manuscripts will conform to the available
review capacities. Hence, a complicated set of trade-
offs must be considered during the assignment phase.
We observe that in many peer review settings,

where referees are required to provide a cardinal
ranking of proposals, there are no clear norms for
assessments, and there may be a large variation in
what criteria the referees choose to emphasize and

how they emphasize them. In these settings, ordinal
rankings provided by the referees may reflect the rel-
ative order of proposals better than cardinal rank-
ings. Based on this observation, we propose a new
approach for the proposals-to-reviewers assignment
problem that provides a solution that maximizes the
number of proposal pairs that are evaluated in a bal-
anced way.
It is shown that the proposals-to-reviewers assign-

ment problem can be represented as a set-covering
problem, which can be solved quite easily for prob-
lems of moderate size. In general, and for very large
numbers of proposals and reviewers, a simple yet effi-
cient heuristic is proposed for solving the assignment
problem. If every pair is reviewed by at least one
reviewer, then connectivity among the proposals is
guaranteed, and therefore a complete pairwise com-
parison aggregate matrix can be obtained.
The larger part of our input data is the binary

matrix Akp. This matrix may contain thousands of
entries for a moderately sized problem (e.g., 3,200
entries for a problem with 40 proposals and 80 ref-
erees). We note that there is no need to enter this
matrix manually. Instead, each proposal can be associ-
ated with one (or several) disciplinary area(s) out of a
limited list of such areas. Similarly, each reviewer can
state his or her expertise areas, out of the same list.
Using these data, the creation of the matrix Akp can be
easily automated. Indeed, some journals have already
adopted such a data-acquisition process through Web-
based electronic submission systems.
Future research may explore mechanisms that will

assist the review board to “negotiate” uk values with
the reviewers. Because the uks affect the SCIP model
only implicitly (through the CI

kp parameters), this will
require the development of some special-purpose sen-
sitivity analysis model. Another direction might be
to extend the overlap concept from pairs to n-tuples
with n> 2 (as the heuristic procedure attempts to do,
at least implicitly, through the outcome measures np−q

and nq−p).

Appendix. Illustrative Example of the
Heuristic Procedure
Consider the four-proposal, three-reviewer example we dis-
cussed at the beginning of §2.
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Step 1. Prioritization. There are three pairs with a weight
of 1 �	1�2
� 	1�3
� 	2�3
� and three pairs with a weight of 2
�	1�4
� 	3�4
� 	2�4
�.

Step 2. Assignment. Assign proposals 1 and 2 to revie-
wer 1; update u1 = 1; compute npq , np−q , nq−p.

Step 1. Prioritization. The updated list of pairs (ordered
in increasing weight values) is now as follows:

Potential
No. Pair reviewers npq np−q nq−p Weight

1 1�3 3 0 1 0 1
2 2�3 2 0 1 1 1
3 1�4 1�3 0 1 0 2
4 2�4 1�2 0 1 0 2
5 3�4 2�3 0 0 0 2
6 1�2 — 1 0 0 3

Note that the pair �1�2� now has no potential reviewers,
because the single reviewer who was capable of reviewing
both proposals (reviewer no. 1) has already received them
for evaluation.

Step 2. Assignment. Assign proposals 1 and 3 to reviewer
3; update u3 = 1; compute npq , np−q , nq−p.

Step 1. Prioritization. The new list of pairs is now as
follows:

Potential
No. Pair reviewers npq np−q nq−p Weight

1 2�3 2 0 1 1 1
2 1�4 1�3 0 2 0 2
3 2�4 1�2 0 1 0 2
4 3�4 2�3 0 1 0 2
5 1�2 — 1 1 0 3
6 1�3 — 1 1 0 3

Step 2. Assignment. Assign proposals 2 and 3 to revie-
wer 2. Update u2 = 1.

Step 1. Prioritization. The new list of pairs is now

Potential
No. Pair reviewers npq np−q nq−p Weight

1 1�4 1�3 0 2 0 2
2 2�4 1�2 0 2 0 2
3 3�4 2�3 0 2 0 2
4 1�2 — 1 1 1 7
5 1�3 — 1 1 1 7
6 2�3 — 1 1 1 7

Step 2. Assignment. The top priority is now given to the
pair 1, 4. Because the uk values of all reviewers are now
set to 1, we cannot assign the pair to any reviewer. Also,
proposal 1 is already assigned to reviewers 1 and 3. Hence,
we assign proposal 4 to reviewer 1 and update u1 = 0.

Step 1. Prioritization. The new list of pairs is now

Potential
No. Pair reviewers npq np−q nq−p Weight

1 3�4 2�3 0 1 0 2
2 1�4 3 1 2 0 4
3 2�4 2 1 2 0 4
4 1�2 — 1 1 1 7
5 1�3 — 1 1 1 7
6 2�3 — 1 1 1 7

Step 2. Assignment. The top priority is now given to the
pair 3, 4. Again, it is impossible to assign them both to a sin-
gle reviewer to whom none of them was already assigned.
Because proposal 3 was already assigned to reviewers 2
and 3, we assign proposal 4 to reviewer 2 and update u2 = 0.

Step 1. Prioritization. The new list of pairs is now

Potential
No. Pair reviewers npq np−q nq−p Weight

1 1�2 — 1 1 1 7
2 1�3 — 1 1 1 7
3 2�3 — 1 1 1 7
4 2�4 — 2 0 0 10
5 1�4 3 1 1 1 14
6 3�4 3 1 1 1 14

Step 2. Assignment. Now we need to skip the first four
rows, as there are no remaining available reviewers to
review these pairs. The top priority is now given to the
pair 1, 4, where our only option is to assign proposal 4 to
reviewer 3 and update u3 = 0.

Step 3. Termination. At this point there are no more avail-
able reviewers, so we stop.
The final allocation, 	1�2�4
 → 1, 	1�3�4
 → 3, 	2�3�4


→ 2, is the unique optimal solution for this case.
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