
Static Repositioning in a Bike-Sharing System:
Models and Solution Approaches

Tal Raviv, Michal Tzur, Iris A. Forma

Industrial Engineering Department

Tel Aviv University, Tel Aviv, 69978 ISRAEL

talraviv@eng.tau.ac.il, tzur@eng.tau.ac.il, irisforma@eng.tau.ac.il

Unabridged Version

Abstract

Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations

scattered in the city, use them for a short journey and return them at any other station in the city.

Recently many cities around the world deployed such systems in order to encourage their citizens

to use bicycles as an environmentally sustainable, socially equitable mode of transportation, and as

a good complementary to other modes of the mass transit systems. A crucial factor for the success

of a bike sharing system is its ability to meet the fluctuating demand for bicycles and for vacant

lockers at each station. This is performed through a repositioning operation which consists of

removing bicycles from some stations and transferring them to other stations, using a dedicated

fleet of trucks. Operating such a fleet in a large bike sharing system is an intricate problem

consisting of decisions on the routes that the vehicles should follow, and the number of bicycles

that should be removed or placed in each station at each visit of the vehicles. In this paper we

present our modeling approach to the problem, which is unique in its objective function, and

incorporates additional characteristics that are new to the literature. Several Mixed Integer Linear

Program formulations are then presented. We discuss the assumptions and implications associated

with each, and compare their performances through an extensive numerical study. The results

indicate that one of the formulations is very effective in obtaining high quality solutions to real life

instances of the problem consisting of up to 104 stations and two vehicles. The optimality gap in

these instances was quite small (2.97% on average and no more than 5.41%). It is also indicated

that under certain conditions, other formulations may become preferable.

1. Introduction
Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations scattered

in the city, use them for a short journey and return them at any other station in the city. Recently many

cities around the world deployed such systems in order to encourage their citizens to use bicycles as

an environmentally sustainable and socially equitable mode of transportation, and as a good

complementary to other modes of mass transit systems (mode sharing). In addition, a municipal bike-

sharing system may yield revenue for the city in the compliance carbon offset market, see for example

Capoor and Ambrosi (2009). One of the largest bike-sharing systems as of today is Vélib, launched on

mailto:talraviv@eng.tau.ac.il�
mailto:tzur@eng.tau.ac.il�
mailto:irisforma@eng.tau.ac.il�

2

July 2007 in Paris (www.velib.paris.fr). It now consists of some 2000 renting stations and offers more

than 20,000 bikes for rent. The company operates a fleet of 25 trucks to perform the repositioning

operation. As of December 2010 some 238 cities around the world deployed such systems and 53 are

in planning stages, see MetroBike LLC (2011).

A crucial factor for the success of a bike sharing system is its ability to meet the fluctuating

demand for bicycles at each station. In addition, the system should be able to provide enough vacant

lockers to allow the renters to return the bicycles at their destinations. Indeed, the main complaint

heard from users of bike-sharing systems in forums and blogs regards to unavailability of bicycles and

(even worse) unavailability of lockers at their destination. In Brussels, for example, a voluntary group

of users created a web service that pulls inventory data from the city's bike-sharing (Villo) website in

order to monitor the service level and create a public pressure on the operator to improve it.

According to the group’s web site (http://www.wheresmyvillo.be/), their main cause is to make

“JCDecaux [the operator] drastically improve the availability of bikes and parking spaces, through

better reallocation of bikes”. Their website displays statistics about the percentage of time in which at

least one bicycle (resp., locker) was available in each station during the last seven days. As of October

14, 2010 the ten worst stations, out of the system’s 180 stations, could not provide a single bicycle

more than 33% of the time (resp., provide a single locker more than 23% of time).

Meeting the demand for bicycles and vacant lockers is a particularly challenging problem due to

inherent imbalances in the renting and return rates at the various stations. In some cases, the

imbalance is temporary, e.g., high return rate in a suburban train station in the morning and high

renting rate in the afternoon. In other cases the imbalance is persistent, e.g., relatively low return rate

in stations located on top of hills. Satisfying the users’ demand subject to such imbalances requires

regularly removing bicycles from some stations and transferring them to other stations. This task is

performed using a dedicated fleet of light trucks. We refer to this activity as repositioning bicycles.

Thus, the bicycle repositioning problem involves routing decisions concerning the vehicles, and

inventory decisions concerning bicycles in the rental stations. The latter problem involves determining

the number of bicycles removed or placed in each station at each visit of a vehicle, with the objective

of achieving a high level of users’ satisfaction from the system, defined more precisely in the sequel.

The repositioning operation can be carried out in two different modes: one is during the night when

the usage rate of the system is negligible; the other is during the day when the status of the system is

rapidly changing. We refer to the former as the static repositioning problem and to the latter as the

dynamic repositioning problem. Some operators use the former mode, some use the latter and some

use a combination thereof, Callé (2009).

Since automated bike sharing systems are quite new, the operations research literature on

problems related to it is sparse. Such systems raise modeling questions, as well as challenges

concerning devising appropriate solution methods to solve the resulting problems. While the domain

of bike sharing systems’ operation is yet to be studied, some aspects of it have already appeared in the

http://www.velib.paris.fr/�
http://www.wheresmyvillo.be/�

3

literature on vehicle and inventory routing, as described in Section 2. In this paper we focus on the

static mode of operation which benefits from a practical advantage because it allows the repositioning

fleet to travel swiftly in the city without contributing to traffic congestion and parking problems. The

static problem needs to be solved once at the beginning of every night, based on the status of the

system at that time and the demand forecast for the next day.

The contributions of this paper are the following:

First – Introduction of a new problem:

We introduce a new inventory-routing problem, arising from a new application area, namely bike

sharing systems, which is timely, relevant and challenging.

Second – Presentation of mathematical models for the new problem:

We present our modeling approach to the problem of repositioning in a bike-sharing system, which is

unique in its objective function, and incorporates additional characteristics that are new to the

literature. The chosen objective function is based on practical considerations and is quite unusual

compared to typical routing problems as it focuses on minimizing the user dissatisfaction in face of

stochastic demand. Based on our modeling approach we offer several Mixed Integer Linear Program

(MILP) formulations, each is associated with a certain vision on the problem's physical

characteristics. As a result, they are distinct from each other with respect to permissible actions of the

repositioning vehicles. In particular, they differ in their limitations on the allowed set of routes, and in

the restrictions on transshipments of bicycles via intermediate stations.

Third – Development of solution methods:

We develop solution methods to the problem, that are based on the MILP formulations described

above, combined with some algorithmic enhancements. The algorithmic enhancements are steps taken

beyond a straightforward application of a MILP solver, and are required in order to obtain good

solutions in a reasonable time. Technicalities that needed to be worked out in formulating and solving

the problem efficiently may prove to be useful for other routing problems as well, so that the

theoretical contribution of this work may be applicable more generally.

Fourth – Verification through computational experiments:

We solve a variety of instances using the suggested formulations and solution methods, compare their

solutions and running times, and discuss the advantages and disadvantages of each. The results

indicate that one of the formulations and its associated solution method is very effective in solving

real life instances of the problem with up to 104 stations and two vehicles.

Thus, our contributions are both from a scientific and a practical point of view. As this is the first

work to consider all aspects of the repositioning problem, we see it also as a building block in

developing further models and methods to this complex optimization problem. Towards that, we

provide the community with our set of instances, to be used as benchmark problems.

The rest of this paper is organized as follows: in Section 2 we review the literature, describing

related work from several application areas. In Section 3 we present our modeling approach by

4

specifying the underlying assumptions and the chosen objective function, present our formulations,

and sets of valid inequalities to each, that are used to tighten them. In Section 4 we discuss additional

algorithmic enhancements that are needed in order to solve the mathematical models effectively. In

Section 5 we describe our numerical experiments, the results, and their analysis. Finally, in Section 6

we discuss some of our assumptions, their implications, possible extensions and directions for further

research.

2. Literature Review
The bicycle repositioning problem was first introduced in Forma et al. (2010) where a single

formulation to a more restricted problem was presented. The bicycle repositioning problem can be

classified as a variation of the Pickup and Delivery Problem (PDP). Berbeglia et al. (2007) surveyed

the literature on static PDP and classified these problems according to various parameters. By this

classification, the repositioning problem presented in this study is a many-to-many single commodity

PDP with arbitrary vehicle capacities and non-linear objective function, for which no studies are

available. In pickup and delivery problems, as opposed to our bicycle repositioning problem, the

quantities picked-up or delivered to a node are given.

The bicycle repositioning problem also bears great similarities to the Inventory Routing Problem

(IRP), since it needs to determine the routes of the vehicles, as well as the quantities of bicycles to

load or unload at each visited node. However, in IRP the objective is to determine distribution policies

from one or more depots that minimize the total cost, i.e., the sum of inventory holding and

transportation costs, while avoiding stock-outs and respecting storage capacity limitations, see a

recent survey by Bertazzi et al. (2008).

Another closely related routing problem is the Swapping Problem (SP), first introduced by Anily

and Hassin (1992). In its generic form, the SP is defined as follows: “Each vertex of a graph may

contain an object of a known type. A final state, specifying the type of object desired at each vertex, is

also given. A single vehicle of a unit capacity is available for shipping objects among the vertices.

The swapping problem is to compute a shortest route such that a vehicle can accomplish the

rearrangement of the objects while following this route”. Anily and Hassin (1992) showed that the

problem is NP-Hard and presented a 2.5 approximation algorithm. The SP is, on one hand, more

general than our problem since the objects may belong to more than one type; however, in the SP the

demand at the nodes is limited to one unit, there is one vehicle only, and its capacity is limited to one.

Further studies on the SP focus mainly on special cases of the problem, for which a polynomial time

optimization or approximation algorithms are possible, for example Anily et al. (1999), where a

quadratic time optimization algorithm for SP on a line is presented. A slight variation of SP is the

mixed SP where the vehicle is allowed to temporarily unload some of the objects at nodes other than

their destinations. A recent study by Bordenave et al. (2010) presents a constructive approach and

5

several improvement heuristics that provide near optimal solutions (optimality gap of less than 1% on

average) of instances with up to 10,000 nodes.

Hernández-Pérez and Salazar-González (2004a) introduced the one-commodity pickup and

delivery traveling salesman problem (1-PDTSP), a generalization of the well-known TSP where each

customer has supply or demand of a given amount of a single product. One vehicle of a given capacity

must visit each customer and the depot exactly once, picking up units of the product from customers

with supply and delivering it to customers with demand, while minimizing the total travel distance.

They present an ILP model for this problem and describe a branch and cut procedure for solving it.

Hernández-Pérez and Salazar-González (2004b) presented heuristic methods for the problem and

demonstrated their applicability for instances with up to 500 nodes. Louveaux and Salazar-González

(2009) considered the 1-PDTSP with stochastic demand or supply. They study the problem of finding

the smallest vehicle capacity that assures feasibility, i.e., being able to satisfy all demands; for a given

vehicle's capacity they search for a tour which minimizes the objective function which includes a

penalty that is proportional to the unsatisfied demand.

Raviv and Kolka (2011) develop a method which calculates the expected user dissatisfaction over

a given period in a single bike-sharing station. More specifically, it calculates the expected weighted

number of users who arrive at the station and cannot fulfill their request immediately due to lack of

bicycles or lack of vacant lockers. Their method requires as an input the rates of two independent non-

homogenous Poisson demand streams for users seeking to rent bicycles and users seeking to return

bicycles at the station, and the relative weights of dissatisfaction for unfulfilled requests. They also

proved that the expected weighted user dissatisfaction function is convex in the inventory level at the

station at the beginning of the period (e.g., day), and developed a method to calculate the function

efficiently.

The closest studies to ours is that of Benchimol et al. (2011) and Chemla et al. (2011) who study a

one commodity pickup and delivery problem under the assumptions of a single vehicle and no time

constraint, motivated too by the application of repositioning bicycles. The goal is to minimize the total

travel distance of the vehicle while completing a prescribed repositioning task. Chemla et al. (2011)

describes a branch-and-cut algorithm for solving a relaxation of the problem, from which a solution is

obtained through a Tabu search.

Vogel and Mattfeld (2010) presented a stylized model to assess the effect of dynamic

repositioning efforts on service level. Their model is useful for strategic planning but is not detailed

enough to support the repositioning operation. Nair and Miller-Hooks (2011) used a stochastic

programming approach to handle dynamic repositioning planning in shared mobility systems. Their

model assumes that the cost of moving a single vehicle between two given stations is known and

fixed. In our view this assumption is realistic for one way car sharing systems that motivated their

work. However, Nair et al. (2011) apply a similar model on data obtained from Vélib.

6

Some authors considered strategic decisions regarding bike rental stations capacity and locations.

Shu et al. (2010) proposed a stochastic network flow model to support these decisions. They use their

model to design a bike sharing program in Singapore based on demand forecast derived from current

usage of the mass transit system. Lin and Ta-Hui (2011) consider a similar problem but formulate it as

a deterministic mathematical model. Their model is aware of the bike path network and mode sharing

with other means of public transportation.

Finally, there are some similarities between bike-sharing systems and car-sharing systems. The

latter may belong to the round-trip type of system, or to the one-way type of system, based on whether

a user has to return a car to the same parking space or can return it to any station, respectively, see, for

example, Mukai and Watanabe (2005) and Uesugi, et al. (2007). However, there are clearly major

differences between bike and car sharing systems, since typically a car is moved from one location to

another by assigning a driver to it, and cars are not moved in batches.

The static bicycle repositioning problem combines some aspects of the studies described above,

but addresses new and broader ones that have not been studied before. One such important aspect is

the objective function, which aims to minimize some measure of expected user’s dissatisfaction,

where all the studies mentioned above consider total travel distance as the sole objective function.

3. Model Formulation
The satisfaction of users from a bike sharing system is a crucial factor in its popularity and success.

Hence, a major challenge in modeling and formulating the repositioning problem is to express the

objective function accordingly. We do so by expressing the objective function, to be minimized, as

the dissatisfaction of users, defined as in Raviv and Kolka (2011), i.e., the expected weighted number

of users who arrive at the station and cannot fulfill their request immediately due to lack of bicycles or

lack of vacant lockers. Raviv and Kolka (2011) show how to calculate the user dissatisfaction

function based on time-dependent demand distributions for the next day (or any other chosen planning

horizon). This enables us to treat the values of the dissatisfaction functions as known for every

possible inventory level. They further prove that this function is convex, a property which is crucial

for our solution methods. For completeness of our paper, we summarize these results in Appendix A.

Therefore, the repositioning problem is to determine the route of each vehicle and the number of

bicycles to load or unload at each station that the vehicle visits, such that the sum of the dissatisfaction

costs at all stations is minimized. The above decisions are subject to capacity constraints of the

vehicles, the stations and the depot, as well as time constraints concerning traveling times, and

loading and unloading times. The latter are assumed to be linear with the number of bicycles

loaded/unloaded.

Additional modeling choices are associated with permissible actions of the fleet of vehicles

performing the repositioning operation, in particular, limitations on the allowed set of routes and/or

7

limitations on the quantity of bicycles loaded / unloaded at each station. Such limitations may result

from operational considerations or from computational limitations. They are described and discussed

in details later in this section, when presenting the various mathematical formulations. Table 1 at the

end of this section summarizes the capabilities and assumptions of the formulations presented in this

paper.

In the static version of the problem studied here, repositioning is performed while the demand for

bicycles and vacant lockers is assumed to be null. Indeed, in reality the demand during the night is

negligible. A given length of time (say, five hours, from 1 a.m. to 6 a.m. every night) is allotted to the

repositioning operation, and its purpose is to improve the starting conditions (bicycle inventory levels

at the stations) of the next day.

While one could argue that a bi-objective function should be used, where a second objective

represents the operating costs of the repositioning fleet, we believe that adding this term is not needed

because the cost of hiring the drivers and maintaining the vehicles is sunk at the point of time when

the actual repositioning operation is performed. Nevertheless, in all formulations presented in this

paper it is straightforward to add the operating costs to the objective function, if desired.

Next we present notation that is common to all our formulations.

3.1 Notation
The static repositioning problem is described by the following sets and parameters:

𝑁 set of stations, 𝑖 = 1, … , |𝑁|

𝑁0 set of nodes, including the stations and the depot (denoted by 𝑖 = 0), 𝑖 = 0, … , |𝑁|

𝑉 set of vehicles, 𝑣 = 1, … , |𝑉|

𝑠𝑖0 quantity of bicycles at node i before the repositioning operation starts

𝑐𝑖 capacity of bicycles (number of lockers installed) at station i ∈ 𝑁

𝑐0 capacity of bicycles at the depot (available space); note that this parameter may be

represented by a large number, if no space constraint exists.

𝑘𝑣 capacity (number of bicycles) of vehicle 𝑣 ∈ 𝑉

𝑓𝑖(𝑢) cost (dissatisfaction, in units of, e.g., expected weighted unfulfilled requests of users) of

reaching a level of u bicycles at station 𝑖 at the end of the repositioning operation, 𝑢 =

0, … , 𝑐𝑖

𝑡𝑖𝑗 Traveling time from station i to station j

𝑇 time allotted to the repositioning operation, also referred to as a planning horizon

𝐿 time required to remove a bicycle from a station and load it onto the vehicle

U time required to unload a bicycle from the vehicle and hook it to a locker in a station

8

3.2 Arc-Indexed Formulation
Our first mathematical formulation of the problem is referred to as an arc-indexed (AI) formulation.

Initially its objective function is represented by a sum of convex functions, while later these functions

are linearized in an exact manner through a set of constraints. This formulation is similar in the

definition of its decision variables to classical three index formulations of other routing problems.

Still, some of its characteristics are unique to this particular application. An assumption of this

formulation is that each station may be visited at most once by each vehicle, although a certain station

may be visited by several vehicles. We define the following decision variables:

𝑥𝑖𝑗𝑣 a binary variable which equals one if vehicle 𝑣 travels directly from node 𝑖 to node 𝑗, and zero

otherwise;

𝑦𝑖𝑗𝑣 quantity of bicycles carried on vehicle 𝑣 when it travels directly from node 𝑖 to node 𝑗, and

zero if the vehicle does not travel directly from 𝑖 to 𝑗;

𝑦𝑖𝑣𝐿 quantity of bicycles loaded onto vehicle 𝑣 at node 𝑖;

𝑦𝑖𝑣𝑈 quantity of bicycles unloaded out of vehicle 𝑣 at node 𝑖;

𝑞𝑖𝑣 auxiliary variables, used for sub-tour elimination constraints;

𝑠𝑖 inventory level at node 𝑖 at the end of the repositioning operation;

The following parameter needs to be defined and used specifically in this formulation:

M An upper bound on the number of arcs in a tour whose length is at most T time units, which

visits each station at most once; (𝑀 = |𝑁0| is a trivial such upper bound; it may be

strengthened when 𝑇 is small, by solving a simple integer program).

(P1) – Arc indexed (AI) formulation

𝑀𝑖𝑛∑ 𝑓𝑖(𝑠𝑖)𝑖∈𝑁 (1)

s.t.

𝑠𝑖 = 𝑠𝑖0 − ∑ (𝑦𝑖𝑣𝐿 − 𝑦𝑖𝑣𝑈)𝑣∈𝑉 ∀ 𝑖 ∈ 𝑁0 (2)

𝑦𝑖𝑣𝐿 − 𝑦𝑖𝑣𝑈 = ∑ 𝑦𝑖𝑗𝑣 − ∑ 𝑦𝑗𝑖𝑣𝑗∈𝑁0,𝑗≠𝑖𝑗∈𝑁0,𝑗≠𝑖 ∀ 𝑖 ∈ 𝑁0, ∀ 𝑣 ∈ 𝑉 (3)

𝑦𝑖𝑗𝑣 ≤ 𝑘𝑣𝑥𝑖𝑗𝑣 ∀ 𝑖, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗, ∀ 𝑣 ∈ 𝑉 (4)

∑ 𝑥𝑖𝑗𝑣𝑗𝜖𝑁0,𝑗≠𝑖 = ∑ 𝑥𝑗𝑖𝑣𝑗𝜖𝑁0,𝑗≠𝑖 ∀ 𝑖 ∈ 𝑁0,∀ 𝑣 ∈ 𝑉 (5)

∑ 𝑥𝑖𝑗𝑣𝑗𝜖𝑁0,𝑗≠𝑖 ≤ 1 ∀ 𝑖 ∈ 𝑁, ∀ 𝑣 ∈ 𝑉 (6)

∑ 𝑦𝑖𝑣𝐿𝑣∈𝑉 ≤ 𝑠𝑖0 ∀ 𝑖 ∈ 𝑁0 (7)

∑ 𝑦𝑖𝑣𝑈𝑣∈𝑉 ≤ 𝑐𝑖 − 𝑠𝑖0 ∀ 𝑖 ∈ 𝑁0 (8)

∑ �𝑦𝑖𝑣𝐿 − 𝑦𝑖𝑣𝑈�𝑖∈𝑁0 = 0 ∀ 𝑣 ∈ 𝑉 (9)

9

∑ �𝐿𝑦𝑖𝑣𝐿 + 𝑈𝑦𝑖𝑣𝑈�𝑖∈𝑁 + ∑ (𝐿𝑦0𝑖𝑣 + 𝑈𝑦𝑖0𝑣)𝑖∈𝑁 + ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑣𝑖,𝑗∈𝑁0:𝑖≠𝑗 ≤ 𝑇

 ∀ 𝑣 ∈ 𝑉 (10)

𝑞𝑗𝑣 ≥ 𝑞𝑖𝑣 + 1 −𝑀�1 − 𝑥𝑖𝑗𝑣� ∀ 𝑖 ∈ 𝑁0, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,∀ 𝑣 ∈ 𝑉 (11)

𝑥𝑖𝑗𝑣 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑁0: 𝑖 ≠ 𝑗, ∀ 𝑣 ∈ 𝑉 (12)

𝑦𝑖𝑣𝐿 ≥ 0, 𝑦𝑖𝑣𝑈 ≥ 0, integer ∀𝑖 ∈ 𝑁0 ,∀𝑣 ∈ 𝑉 (13)

𝑦𝑖𝑗𝑣 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑁0: 𝑖 ≠ 𝑗, ∀ 𝑣 ∈ 𝑉 (14)

𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁0 (15)

𝑞𝑖𝑣 ≥ 0 ∀𝑖 ∈ 𝑁0 ,∀𝑣 ∈ 𝑉 (16)

The objective function (1) minimizes the total cost (dissatisfaction) incurred at all stations.

Constraints (2) are inventory-balance constraints at the nodes (the stations and the depot). Constraints

(3) represent the conservation of inventory on the vehicles, and constraints (4) limit the quantity

carried on each vehicle to its capacity. These constraints also set to zero the quantity carried on a

vehicle when it travels directly from 𝑖 to 𝑗 if the vehicle does not use that arc. Constraints (5) are

vehicle flow conservation equations. Constraints (6) assert that each station is visited at most once by

each vehicle and constraints (7) (resp., (8)) limit the quantity picked-up by all vehicles from a station

(resp., delivered to a station) to the quantity available there initially (resp., the residual capacity of the

station), see discussion below. Note that constraints (7) also imply non-negativity of the inventory

variables, while constraints (8) also assure that the inventory at each station and at the depot is

bounded by its capacity, therefore these two restrictions are not written explicitly. Constraints (9)

stipulate that all the bicycles that are loaded onto the vehicles are also unloaded. Constraints (10) limit

the total loading and unloading times plus the travel times to the length of time available for the

repositioning operation. Constraints (11) are sub-tour elimination constraints that are similar to those

of Miller et al. (1960). Finally, (12) and (13) are binary and general integrality constraints,

respectively, and (14)-(16) are non-negativity constraints. Note that the integrality of 𝑦𝑖𝑗𝑣 and 𝑠𝑖 is

implied by the integrality of 𝑦𝑖𝑣𝐿 , 𝑦𝑖𝑣𝑈 and 𝑠𝑖0.

Note that the objective function is defined over integer inventory values and supported by a

piecewise linear and convex function. We exploit these properties in order to linearize the objective

function, so that the above formulation becomes a MILP.

Towards that, we define and calculate for all 𝑖 = 1, … ,𝑁 and 𝑢 = 0, … , 𝑐𝑖-1:

𝑏𝑖𝑢 ≡ 𝑓𝑖(𝑢 + 1) − 𝑓𝑖(𝑢)

𝑎𝑖𝑢 ≡ 𝑓𝑖(𝑢) − 𝑏𝑖𝑢 ∙ 𝑢

10

Thus, 𝑏𝑖𝑢 is the marginal cost (which may be negative) of the (𝑢 + 1)𝑠𝑡 bicycle at station 𝑖.

Alternatively, 𝑎𝑖𝑢 and 𝑏𝑖𝑢 represent the intercept and slope, respectively, of the linear function that

supports the convex cost function 𝑓𝑖(.) at the level of 𝑢, see Figure1.

Figure 1: linear functions supporting 𝑓𝑖(𝑢)

Then, linearity of the formulation is achieved by further defining the following decision variables:

𝑔𝑖 cost incurred at station 𝑖;

We can now replace the previous convex objective function by:

𝑀𝑖𝑛∑ 𝑔𝑖𝑖∈𝑁 (17)

and add to the formulation the following constraints:

𝑔𝑖 ≥ 𝑎𝑖𝑢 + 𝑏𝑖𝑢𝑠𝑖 ∀ 𝑖 ∈ 𝑁,𝑢 = 0, … , 𝑐𝑖 − 1 (18)

The resulting MILP formulation consists of the objective function (17) subject to constraints (2)-

(16) and (18). Note that since the convex function is defined over integer values only (quantity of

bicycles), the linearization scheme, described by (17) and (18), is exact and not approximated. The

following assumptions are embedded in the above formulation:

First, as noted above, each station may be visited at most once by each vehicle, see constraints

(6), however a certain station may be visited by several vehicles. Thus, the total quantity picked-up

from a station or delivered to it by all vehicles is limited as stated in constraints (7)-(8). Together

these constraints verify that bicycles are not transshipped from a station before they are brought to it

(or delivered to a station before space is available) during another visit of the same or a different

vehicle. In other words, these constraints exclude situations in which the inventory level at a station is

negative or exceeds its capacity, in the interim of the repositioning period. In fact, these restrictions

are more severe than required in practice, because they exclude the possibility of a vehicle picking-up

bicycles that were previously brought by another vehicle, or delivering bicycles to a station that has

available capacity due to another vehicle which removed bicycles from it in an earlier visit. The Time

Indexed formulation presented in Section 3.3 relaxes this restriction, but is harder to solve.

Second, it is assumed that all bicycles brought to the depot by the vehicles are unloaded there,

even if the vehicle is about to continue its trip and need to load new bicycles in order to deliver them

to other stations. This is due to the inability of the arc indexed model to keep track of the total number

𝑓𝑖

𝑢 𝑐𝑖 2 0 1

11

of bicycles loaded and unloaded at the depot, and hence the time that these operations consume.

While this assumption is a somewhat conservative, its effect on the solution is marginal.

Finally, vehicles may redistribute bicycles in the system in any way that reduces costs. This

means, for example, that a vehicle may deliver bicycles to a station even if the station already has

more than its “ideal” quantity, that is, the quantity that minimizes its cost function. Such an action

may be justified if the bicycles are brought from a station where their presence is more costly. Since

the objective is minimizing the overall cost in the system, this capability is desirable.

Solving the problem using the above formulation may become quite time consuming for problems

of realistic size. To enhance the running time, we propose two directions: one is adding valid

inequalities that are specific to this formulation. Another is solving the problem through a two-stage

heuristic, a method which is used also to enhance the running times of the other formulations, and is

described in Section 4.1.

The following valid inequalities may be added to the formulation:

∑ 𝑥0𝑗𝑣𝑗∈𝑁 ≥ 1 ∀ 𝑣 ∈ 𝑉 (19)

Constraints (19) verify that each vehicle departs from the depot at least once. We observed

numerically that this valid inequality proved to be particularly useful, since without it, the number of

vehicles that “leave” the depot, in the LP relaxation, is fractional, according to the required capacity.

Forcing a whole vehicle to leave the depot propagates by the vehicle flow conservation equation (5) to

all other visited nodes.

𝑦𝑖𝑣𝐿 ≤ min (𝑠𝑖0,𝑘𝑣)∑ 𝑥𝑖𝑗𝑣𝑗∈𝑁0 ∀ 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉 (20)

𝑦𝑖𝑣𝑈 ≤ 𝑚𝑖𝑛(𝑐𝑖 − 𝑠𝑖0,𝑘𝑣)∑ 𝑥𝑖𝑗𝑣𝑗∈𝑁0 ∀ 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉 (21)

Constraints (20)-(21) are somewhat similar to constraints (7)-(8), but refer to loading and

unloading quantity limitations by a single vehicle (rather than all vehicles). This enables tightening

the right hand side of the constraint by including the vehicle's capacity, and conditioning it only to

cases in which the vehicle visits the station.

𝑦𝑖𝑣𝐿 + 𝑦𝑖𝑣𝑈 ≥ ∑ 𝑥𝑖𝑗𝑣𝑗∈𝑁0 ∀ 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉 (22)

Constraints (22) eliminate some solutions where a vehicle enters a station without loading or

unloading any bicycle there. It is valid when the distance matrix satisfies the triangle inequality

because then it is always possible to skip a station with no loading and unloading activities.

In addition, if vehicles are identical it is possible to break symmetry by adding the following

constraints:

∑ 𝑗 ⋅ 𝑥0𝑗𝑣𝑗∈𝑁 ≤ ∑ 𝑗 ⋅ 𝑥0,𝑗,𝑣+1𝑗∈𝑁 ∀ 𝑣 ∈ 𝑉 (23)

In Section 5 we demonstrate the capabilities of this formulation in solving problems of moderate

size.

12

3.3 Time-Indexed Formulation
Our second formulation is based on discretizing the time available for repositioning into slots of short

periods, say five minutes each. The length of each such period is denoted by 𝜏. We define decision

variables with one of the indices representing the time period. Hence, we refer to this formulation as a

time indexed (TI) formulation. The motivation behind it is to be able to “follow” the state of the

system at any point of time, which is helpful in formulating complex situations properly. Indeed, the

time indexed formulation extends the feasible region compared to the arc based formulation as far as

the visits and quantity loaded/unloaded at each station are concerned. Namely, it no longer needs to

limit the quantities of bicycles transshipped via other stations as described in the arc based

formulation (see constraints (7) and (8)), and it no longer needs to limit each vehicle to visit each

station at most once.

In the formulation below, the discretized times are referred to as periods. We define a discretized

travel time matrix, denoted by 𝑡𝑖𝑗′ . These travel times are calculated by dividing the actual travel time

by the period length, 𝜏, and rounding it up to the next integer, to assure feasibility. In addition we set

𝑡𝑖𝑖′ = 1, where traveling from node i to itself represents dwelling at the node for one period. Let

𝑇′ = 𝑇/𝜏 represent the number of periods in the planning horizon. 𝑇′ is assumed to be integer.

The above discretization procedure is applied to the traveling times, and the smaller 𝜏 is chosen to

be, the closer the resulting model is to the continuous times case. However, loading and unloading

times are typically much smaller than traveling times, and discretizing them in the same manner

would result in an unreasonable deviation from the continuous case. Therefore, in the sequel we show

how loading/unloading times can be kept continuous and still incorporated in the discrete periodic

model. To ease on the presentation, we first introduce the TI formulation assuming that

loading/unloading times are zero and afterwards explain how to generalize the formulation to include

them back. In this first, more simplistic model, it is assumed that the loading and unloading operations

are carried out at the beginning of a discretized period before the vehicle leaves the node.

In this and subsequent formulations, we directly present the linearized objective function and

supporting constraints, both of which are identical to those of the AI formulation.

The decision variables used in the time indexed formulation are as follows:

𝑥𝑖𝑗𝑡𝑣 a binary variable that equals one if vehicle v starts to travel from node i to node j in period t,

and zero otherwise;

𝑦𝑖𝑡𝑣𝐿 quantity of bicycles loaded onto vehicle 𝑣 at node 𝑖 during period 𝑡;

𝑦𝑖𝑡𝑣𝑈 quantity of bicycles unloaded from vehicle 𝑣 at node 𝑖 during period 𝑡;

𝑦𝑖𝑗𝑡𝑣 number of bicycles carried from node i to node j by vehicle v during period t;

𝑠𝑖𝑡 inventory level at node 𝑖 at the end of period 𝑡;

𝑔𝑖 cost incurred at station 𝑖; (as in the arc based formulation)

13

(P2) – Time indexed (TI) formulation

𝑀𝑖𝑛 ∑ 𝑔𝑖𝑖∈𝑁 (24)

s.t.

𝑔𝑖 ≥ 𝑎𝑖𝑢 + 𝑏𝑖𝑢𝑠𝑖𝑇′ ∀ 𝑖 ∈ 𝑁,𝑢 = 0, … , 𝑐𝑖 − 1 (25)

𝑠𝑖0 = 𝑠𝑖0 ∀ 𝑖 ∈ 𝑁0 (26)

𝑠𝑖𝑡 = 𝑠𝑖,𝑡−1 + ∑ �𝑦𝑖𝑡𝑣𝑈 − 𝑦𝑖𝑡𝑣𝐿 �𝑣∈𝑉 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′ (27)

𝑠𝑖𝑡 ≤ 𝑐𝑖 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′ (28)

∑ 𝑥0𝑗0𝑣𝑗∈𝑁0 = 1 ∀ 𝑣 ∈ 𝑉 (29)

∑ 𝑥
𝑗,0,𝑇′−𝑡𝑗0

′ ,𝑣𝑗∈𝑁0 = 1 ∀ 𝑣 ∈ 𝑉 (30)

∑ 𝑥𝑗,𝑖,𝑡−𝑡𝑗𝑖
′ ,𝑣𝑗∈𝑁0 = ∑ 𝑥𝑖𝑘𝑡𝑣𝑘∈𝑁0 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′ − 1, 𝑣 ∈ 𝑉 (31)

∑ 𝑦𝑗,𝑖,𝑡−𝑡𝑗𝑖
′ ,𝑣𝑗∈𝑁0 = ∑ 𝑦𝑖𝑘𝑡𝑣𝑘∈𝑁0 + 𝑦𝑖𝑡𝑣𝑈 − 𝑦𝑖𝑡𝑣𝐿

 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′ − 1, 𝑣 ∈ 𝑉 (32)

𝑦𝑖𝑗𝑡𝑣 ≤ 𝑘𝑣𝑥𝑖𝑗𝑡𝑣 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′,∀ 𝑣 ∈ 𝑉 (33)

𝑦𝑖𝑡𝑣𝐿 ≤ 𝑚𝑖𝑛(𝑐𝑖 ,𝑘𝑣)∑ 𝑥𝑖𝑗𝑡𝑣𝑗∈𝑁0 ∀ i ∈ N0, t = 1, … ,T′, ∀ v ∈ V (34)

yitvU ≤ min(ci, kv)∑ xijtvj∈N0 ∀ i ∈ N0, t = 1, … ,T′, ∀ v ∈ V (35)

𝑦𝑖𝑡𝑣𝐿 ≥ 0, 𝑦𝑖𝑡𝑣𝑈 ≥ 0, integers ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′,∀ 𝑣 ∈ 𝑉 (36)

𝑥𝑖𝑗𝑡𝑣 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′,𝑣 ∈ 𝑉 (37)

𝑦𝑖𝑗𝑡𝑣 ≥ 0 ∀𝑖, 𝑗 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′,𝑣 ∈ 𝑉 (38)

𝑠𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑁, 𝑡 = 0, … ,𝑇′ (39)

The objective function (24) is identical to the linearized objective function in the arc based

formulation. Similarly, constraints (25) are the linear constraints that support the convex cost

function, defined here with respect to the inventory at each station at the end of the last period, 𝑇′.

Constraints (26) and (27) define the initial inventory and the inventory balance at the nodes while

constraints (28) specify that the inventory at each node in each period is bounded by its capacity.

Constraints (29) and (30) specify that each vehicle departs from the depot at the beginning and returns

to it at the end of the repositioning operation, respectively. Constraints (31) are vehicle flow

conservation equations, they stipulate that when a vehicle enters a node at some period (after traveling

to it a certain number of periods according to its origin), it will leave the node at that period, possibly

going to the same node itself. Thus, these constraints schedule the movement of vehicles consistently

with the (discretized) distance matrix. Constraints (32) represent the conservation of inventory

(bicycles) on the vehicles in each period, and constraints (33) limit the quantity carried at each vehicle

in each period to the vehicle's capacity and stipulate that bicycle are carried only on the chosen links.

Constraints (34) (resp., (35)) assure that no bicycles are loaded (resp., unloaded) at a node in each

14

certain period if the node is not visited at that period. Finally, constraints (36)-(39) are integrality and

non-negativity constraints. In this formulation any reference to an index of a vector or matrix that is

out of bound should be replaced by zero.

The important advantages of the TI formulation mentioned at the beginning of this section are

made possible due to monitoring the inventory at each station in every period. Note that it also means

that sub-tours of the vehicles are allowed in the solution, although each vehicle still departs from the

depot and returns to it. This additional flexibility in forming solutions is likely to improve the

repositioning operation and consequently the optimal objective function’s value. The ability to

redistribute bicycles in the system in any way that reduces costs exists in the time indexed

formulation, in the same way as it does in the arc based formulation, see the discussion there.

We define 𝑡𝑖𝑖′ = 1 to allow dwelling at the stations. Note that dwelling may be desirable exactly

for the reasons indicated above, namely, to synchronize the visits of different vehicles at the station.

As the arc based formulation does not keep track of time, this capability cannot be observed and

utilized by its solution.

On the other hand, the TI formulation suffers from a limitation which results from discretizing the

travel times. To assure feasibility, the integer traveling times are rounded up, which causes

unnecessary slacks in the schedule. To partially overcome this problem, as well as to add the positive

loading/unloading times back into the formulation, we extend the above formulation by modifying

and adding some constraints. The modifications are non-trivial, since the revised model combines a

discrete and continuous representation of time. This enables us to gain the advantages of discreteness,

discussed above, together with increased accuracy of the real time constraints of the system.

First, we add the following two sets of constraints:

 ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑡−𝑡𝑖𝑗′ ,𝑣 𝑡≤𝑤𝑖,𝑗∈𝑁0 + ∑ ∑ (𝐿𝑦𝑖𝑡𝑣𝐿 + 𝑈𝑦𝑖𝑡𝑣𝑈)𝑡≤𝑤𝑖∈𝑁0 ≤ 𝑤 ∙ 𝜏

 ∀ 𝑤 = 1, … ,𝑇′, ∀𝑣 ∈ 𝑉 (40)

∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑡−𝑡𝑖𝑗′ ,𝑣 𝑡≤𝑤𝑖,𝑗∈𝑁0 + ∑ ∑ (𝐿𝑦𝑖𝑡𝑣𝐿 + 𝑈𝑦𝑖𝑡𝑣𝑈)𝑡≤𝑤𝑖∈𝑁0 ≥ (𝑤 − 2) ∙ 𝜏

 ∀ 𝑤 = 1, … ,𝑇′, ∀𝑣 ∈ 𝑉 (41)

In constraints (40), the restriction on time is enforced every period (i.e., every τ continuous time

units). It allows monitoring closely the total time spent on all activities (traveling and

loading/unloading). While the first term on the left hand side of the constraint represents the total

completed travel time of vehicle 𝑣 on all arcs up to a certain discretized period, 𝑤, the second term on

the left hand side of the constraint represents the total loading/unloading time spent by that vehicle up

to the same period. Note that both terms on the left hand side of this constraint represent continuous

times, and so does the right hand side. Since the actual travel times may be lower than the time in a

complete number of periods, a slack may be created by the first term on the LHS of the constraint,

which may be used by the second term of the LHS of the constraint, by loading/unloading a larger

quantity of bicycles than is actually possible in a certain number of periods, see also constraints (42)

15

and (43) below. In particular if a vehicle is dwelling at some station i during a period, which is

represented by traveling from node i to node i, the whole 𝜏 units of time can be spent by loading and

unloading bicycles since 𝑡𝑖𝑖 = 0 while 𝑡′𝑖𝑖 = 1.

In constraints (41), a lower bound is enforced on the time restriction, with the purpose of keeping

the time of the planned schedule close to its execution. This is important for the accuracy of the

inventory levels at the nodes, which is necessary for the synchronization among vehicles, i.e., making

sure that no vehicle plans to pick-up bicycles which are not brought there yet (by another vehicle).

While lack of synchronization may still apply in the interval of two periods defined between the upper

and lower bounds of constraints (40) and (41), we believe that it is quite negligible.

Next, consider constraints (34) and (35) and replace them by the following constraints:

𝑦𝑖𝑡𝑣𝐿 ≤ min(2𝐿�, 𝑐𝑖 ,𝑘𝑣)∑ 𝑥𝑖𝑗𝑣𝑡𝑗∈𝑁0 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′, ∀ 𝑣 ∈ 𝑉 (42)

𝑦𝑖𝑡𝑣𝑈 ≤ min(2𝑈�, 𝑐𝑖,𝑘𝑣)∑ 𝑥𝑖𝑗𝑣𝑡𝑗∈𝑁0 ∀ 𝑖 ∈ 𝑁0, 𝑡 = 1, … ,𝑇′, ∀ 𝑣 ∈ 𝑉 (43)

where the following two parameters are defined and assumed to be integers:

𝐿� maximum number of bicycles that can be loaded during one period (= 𝜏/𝐿)

𝑈� maximum number of bicycles that can be unloaded during one period (= 𝜏/𝑈)

These constraints add a limitation on the loading / unloading quantities during one period (beyond

the original limitations), which are related to the time it takes to perform these operations. Yet, the

limitation is expressed as twice the actual number, to allow utilizing the slack that may have been

created by the actual (rather than rounded up) travel times in constraints (40).

Given the flexibility of the TI model in terms of its allowed options (re-visiting a node, etc.), we

believe this formulation is a better representation of the real system than the AI formulation. Clearly,

as the length of a period in the discretized model (𝜏) becomes shorter, the model becomes closer to the

continuous one, but also includes a larger number of periods which make it harder to solve.

3.4 Sequence-Indexed Formulation
The next formulation is based on the idea of defining the journey of each vehicle according to the

sequence of nodes which the vehicle visits. In this way, only one node index is required in the routing

decision variables (the index of the node where the vehicle is located), instead of two in the previous

two formulations (denoting the arc on which the vehicle traverses). The other index required, in

addition to the vehicle index, is the position of the node in the sequence. The sequence indexed

formulation handles time in an exact manner as in the AI formulation, but it allows several stops at a

station as in the TI formulation. However, if the number of vehicles is greater than one, it constraints

the number of bicycles transported to and from a certain station, as in constraints (7) and (8) of the AI

formulation. The following parameters need to be defined and used in this formulation:

𝐴 an upper bound on the number of stops in the trip of each vehicle. In Section 4 we discuss

how this parameter is derived;

16

𝑇�𝑗 ≡ max𝑖∈𝑁0 𝑡𝑖𝑗 is the longest traveling time into node 𝑗 from all nodes

The decision variables are defined as follows:

𝑥𝑖𝑎𝑣 a binary variable which equals one if the 𝑎𝑡ℎ stop of vehicle v is at node i, and zero otherwise;

𝑦𝑖𝑎𝑣𝐿 quantity of bicycles loaded at node 𝑖 onto vehicle 𝑣 in its 𝑎𝑡ℎ stop;

𝑦𝑖𝑎𝑣𝑈 quantity of bicycles unloaded at node 𝑖 out of vehicle 𝑣 in its 𝑎𝑡ℎ stop;

𝑟𝑎𝑣 time of completing loading/unloading at the 𝑎𝑡ℎ stop of vehicle 𝑣;

𝑦𝑎𝑣 quantity of bicycles carried on vehicle 𝑣 after loading/unloading at its 𝑎𝑡ℎ stop;

𝑠𝑖 inventory level at station 𝑖 at the end of the repositioning operation;

(P3) – Sequence Indexed (SI) Formulation

𝑀𝑖𝑛 ∑ 𝑔𝑖𝑖∈𝑁 (44)

s.t.

𝑔𝑖 ≥ 𝑎𝑖𝑢 + 𝑏𝑖𝑢𝑠𝑖 ∀𝑖 ∈ 𝑁,𝑢 = 0, … , 𝑐𝑖 − 1 (45)

𝑠𝑖 = 𝑠𝑖0 − ∑ ∑ (𝑦𝑖𝑎𝑣𝐿 − 𝑦𝑖𝑎𝑣𝑈𝑎𝑣∈𝑉) ∀𝑖 ∈ 𝑁 (46)

∑ 𝑥𝑖𝑎𝑣 = 1𝑖∈𝑁 ∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (47)

𝑥01𝑣 = 1 ∀𝑣 ∈ 𝑉 (48)

𝑥0𝐴𝑣 = 1 ∀𝑣 ∈ 𝑉 (49)

𝑟𝑎𝑣 ≥ 𝑟𝑎−1𝑣 − 𝑇�𝑗�1 − 𝑥𝑗𝑎𝑣� +∑ 𝑡𝑖𝑗𝑥𝑖,𝑎−1,𝑣𝑖∈𝑁0 + ∑ �𝐿𝑦𝑖𝑎𝑣𝐿 + 𝑈𝑦𝑖𝑎𝑣𝑈 �𝑖∈𝑁0

 ∀𝑗 ∈ 𝑁0,∀𝑎 ≥ 2,∀𝑣 ∈ 𝑉 (50)

𝑟1𝑣 = 𝐿𝑦01𝑣𝐿 ∀𝑣 ∈ 𝑉 (51)

𝑟𝐴𝑣 ≤ 𝑇 ∀𝑣 ∈ 𝑉 (52)

∑ 𝑦𝑖𝑎𝑣𝐿 ≤ 𝑠𝑖0𝑎,𝑣 ∀𝑖 ∈ 𝑁0 (53)

∑ 𝑦𝑖𝑎𝑣𝑈 ≤ 𝑐𝑖 − 𝑠𝑖0𝑎,𝑣 ∀𝑖 ∈ 𝑁0 (54)

𝑦𝑖𝑎𝑣𝐿 ≤ min (𝑘𝑣, 𝑠𝑖0)𝑥𝑖𝑎𝑣 ∀𝑖 ∈ 𝑁0,∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (55)

𝑦𝑖𝑎𝑣𝑈 ≤ 𝑚𝑖𝑛(𝑘𝑣 , 𝑐𝑖 − 𝑠𝑖0)𝑥𝑖𝑎𝑣 ∀𝑖 ∈ 𝑁0,∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (56)

𝑦𝑎𝑣 = 𝑦𝑎−1𝑣 + ∑ (𝑦𝑖𝑎𝑣𝐿 − 𝑦𝑖𝑎𝑣𝑈𝑖∈𝑁0) ∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (57)

𝑦𝑎𝑣 ≤ 𝑘𝑣 ∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (58)

𝑦0𝑣 = 0 ∀𝑣 ∈ 𝑉 (59)

𝑦𝐴𝑣 = 0 ∀𝑣 ∈ 𝑉 (60)

𝑦𝑖𝑎𝑣𝐿 ≥ 0,𝑦𝑖𝑎𝑣𝑈 ≥ 0, integers ∀ 𝑖 ∈ 𝑁,∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (61)

17

𝑥𝑖𝑎𝑣 ∈ {0,1} ∀ 𝑖 ∈ 𝑁,∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (62)

𝑦𝑎𝑣 ≥ 0 ∀𝑎 = 1, … ,𝐴, ∀𝑣 ∈ 𝑉 (63)

𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁 (64)

The objective function (44) is identical to the one in the previous formulations and constraints

(45) are the linear constraints that support the convex cost function, defined with respect to the ending

inventory at each station, which is the inventory after loading/unloading during all visits. Constraints

(46) define the inventory at the stations at the end of the repositioning operation. Constraints (47)

make sure that each vehicle stops at one station at a time and constraints (48) (resp., (49)) verify that

all vehicles depart from (resp., return to) the depot at the beginning (resp., end) of the repositioning

operation. Constraints (50) define the minimal time required to reach node 𝑗 which is the 𝑎𝑡ℎ stop,

when the (𝑎 − 1)𝑠𝑡 stop is at node 𝑖. The minimal time includes, beyond the time to reach node 𝑖, the

loading/unloading times at node 𝑖 and the travel time between 𝑖 and 𝑗. Constraints (51) define the time

in which vehicle 𝑣 leaves its first stop (the depot) to be the completion time of loading there (note that

the vehicle cannot unload in the first stop at the depot). Constraints (52) restrict the last visit of each

vehicle to occur no later than time 𝑇. Constraints (53)-(54) limit the quantity picked-up from a node

(resp., delivered to a node) in all stops of all vehicles to the quantity available there initially (resp., the

remaining capacity of the station), as limited in the arc based formulation. These constraints make

sure that the capacity of a node is not exceeded and the inventory at the node is non-negative.

Constraints (55)-(56) allow loading and unloading of bicycles at a certain node only when a vehicle

stops at that node. Constraints (57) are inventory balance constraints on each vehicle after each stop

while constraints (58) are vehicle capacity constraints. Constraints (59) (resp., (60)) make sure that

each vehicle is empty before it reaches the first stop (resp., after visiting the last stop, which is the

depot). This stipulates that the total loading and unloading quantities equal to each other. Finally,

(61)-(62) are integrality constraints and (63)-(64) are non-negativity constraints.

We note that if there is only one vehicle, there is no need for synchronization among vehicles and

hence constraints (53)-(54) can be replaced by: 0 ≤ 𝑠𝑖0 − ∑ (𝑦𝑖𝑎1𝐿 − 𝑦𝑖𝑎1𝑈)𝑎≤𝐴′ ≤ 𝑐𝑖 ∀𝐴′ = 1, … ,𝐴

and the right hand side of constraints (55)-(56) should be replaced by 𝑚𝑖𝑛(𝑘𝑣 , 𝑐𝑖)𝑥𝑖𝑎𝑣 in order to

allow unlimited transshipments.

Several valid inequalities, described next, were developed and found to be helpful in speeding-up

the running time of the above formulation. The following constraints were added with respect to the

minimal time required to reach the 𝑎th stop, where T�j = mini∈N0:i≠j tij and T�i = minj∈N0:i≠j tij :

𝑟𝑎𝑣 ≥ 𝑟𝑎−1,𝑣 + ∑ (𝐿𝑦𝑗𝑎𝑣𝐿 + 𝑈𝑦𝑗𝑎𝑣𝑈)𝑗∈𝑁 + ∑ 𝑇�𝑗𝑥𝑗𝑎𝑣𝑗∈𝑁 ∀𝑎 ≥ 2, ∀𝑣 ∈ 𝑉 (65)

𝑟𝑎𝑣 ≥ 𝑟𝑎−1,𝑣 + ∑ (𝐿𝑦𝑖𝑎𝑣𝐿 + 𝑈𝑦𝑖𝑎𝑣𝑈)𝑗∈𝑁 + ∑ 𝑇�𝑖𝑥𝑖,𝑎−1,𝑣𝑖∈𝑁 ∀𝑎 ≥ 2, ∀𝑣 ∈ 𝑉 (66)

18

Constraints (65) state that the time to complete loading/unloading at the 𝑎𝑡ℎ stop is at least that of

completing loading/unloading at the (𝑎 − 1)𝑠𝑡, plus the time spent on loading/unloading at the 𝑎𝑡ℎ

stop, plus the minimal time it takes to reach the 𝑎𝑡ℎ stop from any other node. Constraints (66) are

similar, except that the last term is replaced by the minimal time it takes to reach another node when

leaving the node visited in the (𝑎 − 1)𝑠𝑡 stop. Note that there are even stronger special cases of

constraints (65) for a=A and of constraints (66) for 𝑎 = 1, since the last and first stops are forced to

be the depot.

Next we add additional valid inequalities to break some symmetry in the problem, which is useful

in reducing the search space:

𝑥𝑖𝑎𝑣 + 𝑥𝑖,𝑎+1,𝑣 ≤ 1 ∀𝑖 ∈ 𝑁,𝑎 = 1, … ,𝐴 − 2, ∀𝑣 ∈ 𝑉 (67)

𝑥𝑖𝑎𝑣 ≤ 𝑦𝑖𝑎𝑣𝐿 + 𝑦𝑖𝑎𝑣𝑈 ∀𝑖 ∈ 𝑁, 𝑎 = 2, … ,𝐴 − 1, ∀𝑣 ∈ 𝑉 (68)

𝑥0𝑎𝑣 + 𝑥0,𝑎+1,𝑣 − 1 ≤ 𝑥0,𝑎+2,𝑣 ∀ 𝑎 = 1, … ,𝐴 − 2, ∀𝑣 ∈ 𝑉 (69)

Constraints (67) eliminate solutions with two consecutive stops at the same station and constraints

(68) eliminate solutions where a vehicle stops at some station but does not load or unload anything

there. While these solutions are feasible they are weakly dominated by others. Constraints (69) make

sure that no vehicle has two consecutive stops at the depot, except possibly last stops, after all

loading/unloading activities are completed. This is achieved by requiring that once a vehicle stays two

consecutive stops at the depot, it must remain there.

3.5 Swapping Based (SB) formulation
Our last formulation is motivated by the similarity of our problem to the swapping problem. As

mentioned in the literature review, the swapping problem is similar to ours in that objects need to be

moved from nodes where they are initially available, to nodes where they are demanded. Thus, our

last formulation is based on the concept of supply and demand nodes. We denote by 𝑠𝑖∗ the quantity of

bicycles which minimizes the cost function 𝑓𝑖(⋅) at station 𝑖, and refer to each station 𝑖 as a supply

node if its initial inventory is larger than 𝑠𝑖∗ and as a demand node if it is smaller. Moreover, to adhere

to the swapping application and formulation, we aim to represent each node as a supply or demand

node of one unit (bicycle) only. Thus, when the supply or demand quantity of a certain station is

larger than one, we duplicate the station, and create as many stations as the supply or demand

quantity. Visiting the first duplicated station associated with a certain original station is equivalent to

picking or removing one unit from the original station, and we set the cost function of the duplicated

stations accordingly, see our notation. All stations 𝑖 with initial inventory of exactly 𝑠𝑖∗ need not be

included in the problem. Finally, the depot remains as a single node with the same role as in previous

formulations.

The resulting problem has many more nodes than the number of stations. In fact, the number of

nodes is exactly the number of units by which all stations (together) are away from their ideal (cost

19

minimizing) quantity. One may refer to it as the "amount of work" in the system. Thus, we expect that

using this formulation may be useful only for systems in which the amount of work is not very high.

On the other hand, for a given number of nodes, the problem is somewhat easier since there are no

quantity decisions to make. Rather, when a node is visited, the activity performed in it is well defined

by the node type (supply or demand) and always one unit is involved.

Compared with previous formulations, in the SB formulation vehicles may not redistribute

bicycles in the system in any way that reduces costs. This is because every duplicated station is

associated with either a surplus or a shortage (compared to the minimizing quantity) of one bicycle, so

that only a pre-defined operation of removing (resp., delivering) is allowed from any particular node.

On the other hand, visiting a station multiple times is possible; in fact it is obtained when visiting

duplicated stations of the same original station not consecutively.

The swapping based (SB) formulation is similar to the arc indexed formulation, where each

station represents a copy of the original one. More details on the SB formulation and how its unique

characteristics are formulated compared to the AI formulation, are presented in Appendix B. As

mentioned above, this formulation by itself is not expected to be an efficient one for most realistic

systems (an expectation that was confirmed in a limited numerical experiment). However, the way in

which the swapping and the repositioning problems are similar on one hand and different on the other

hand is established and made clear by presenting this formulation. This may become useful for

solving the repositioning problem if in the future an efficient algorithm for the swapping problem may

be developed, in a way that can be easily amended to the repositioning problem.

We conclude this section, in which various formulations were presented for the repositioning

problem, with a summary of the capabilities and assumption embedded in these formulations. This

summary is organized in a tabular format, see Table 1.

4. Algorithmic Enhancements
Solving the formulations presented in the previous section may be quite time consuming, even for

instances of moderate size. In this section we discuss ways to speed-up the computation times of the

various formulations. It includes solving the problems in two stages (Section 4.1), reducing the

number of binary variables based on geographical considerations (Section 4.2) and a careful selection

of some of the parameters used in the formulations (Section 4.3). Some of these techniques are

heuristic rather than optimal, but in our numerical experiments in Section 5 it is demonstrated that this

fact has a marginal impact on the solution, and when a budget of time is given to solve the problem, it

contributes to improving the overall solution in most cases.

20

Table 1: Comparing the assumptions and capabilities of the various formulations

4.1 A Two-Phase Solution Method
The two-phase solution method is motivated by the variables representing the quantity of bicycles

loaded or unloaded at the various nodes. While these variables are required to be non-negative

Assumption Arc Indexed Time Indexed Sequence Indexed Swapping Based
Vehicles can visit each
station an arbitrary number
of times.

No. Each vehicle
can visit each
station at most
once. Each station
can be visited by
several vehicles.

Yes Yes Yes

Transshipments are allowed,
that is, vehicles can unload
bicycles at nodes, to be
loaded later on.

Yes, but the
maximum number
of bicycles that can
be unloaded (resp.
loaded) cannot
exceed the initial
residual capacity
(resp., initial
inventory level) at
the node.

Yes, in an unlimited
manner.

Same as in the Arc
Indexed model
except in the single
vehicle case where
transshipment are
unlimited.

No.

Vehicles can dwell at stations
in order to synchronize
transshipments.

No. synchronization
is guaranteed via
restriction on
loading and
unloading
quantities. See
previous
assumption.

Yes Same as in the Arc
Indexed model.

N/A. No
Transshipments are
allowed.

Bicycles can be redistributed
in the system in any way that
reduces total costs, even if it
is not locally optimal to do
so.

Yes Yes Yes No

All bicycles are assumed to
be unloaded at each visit of
the vehicles to the depot.

Yes No No Yes

Other considerations and
comments

This model
delivered the best
results for most of
the instances in our
numerical
experiment, in spite
of its restrictive
assumptions.

- Accuracy is lost
due to the time
discretization.

- The model can be
adapted to the
dynamic problem.

Presumption on the
maximum number
of stops is required.

The size of the
model is affected by
the total amount of
work. Indeed,
the model could not
solve most of our
instances.

21

integers, which add a tremendous difficulty to solving the problem, their precise value tend to inflict

only a minor effect on the optimal routing decisions.

Thus, in the two-phase solution method the problem is first solved while ignoring the integrality

constraints of the loading/unloading variables, so that a solution to the routing decisions is obtained.

In the second phase the obtained routing variables are fixed to their solution of the first phase, and the

rest of the problem is then solved. We demonstrate in more details the motivation and implementation

of this approach in the arc-indexed formulation, where the adaptation to other formulations is done in

a similar manner.

Thus, consider again the AI formulation given in Section 3.2, and note that the integrality

constraint in (13) may be omitted if there are no loading and unloading times, i.e., 𝐿 = 0 and 𝑈 = 0.

In such a case there always exists an integer optimal solution to (P1), because once the values of the

x's are determined, the problem can be casted as a minimum cost flow problem with integer capacity

and demand parameters. Positive values of loading or unloading times add a knapsack component to

the problem through constraints (10) and hence further complicate it. However, we observed

empirically, that even if the integrality constraints are removed, the number of non-integer values

obtained in the optimal solution is small (in most cases, not more than two non-integers along the

route of each vehicle).

In the two-phase solution approach, the first phase includes solving problem (P1') which is

identical to problem (P1), except that the integrality constraints in (13) are removed. It is still a mixed

integer program, but one which is simpler to solve. Then, the second phase involves solving another

mixed integer program, denoted by (P1''), obtained by fixing the values of the x-variable to the

optimal values they obtained in (P1') and where the integrality of 𝑦 𝑖𝑣𝐿 and 𝑦𝑖𝑣𝑈 is added back.

Obtaining an optimal solution to problem (P1'') is achieved very quickly.

Specifically, consider the AI formulation before it is strengthened by the valid inequalities, given

by the objective function (17) subject to constraints (2)-(16) and (18). In (P1''), the objective function

(17) remains unchanged, and so do constraints (2), (3), (7)-(9) and (13)-(16), which do not include

(directly, see below) the 𝑥-variables. Then, constraints (5), (6), (11) and (12) which include 𝑥-

variables only (and the related 𝑞-variables) are removed. Finally, the remaining constraints ((4) and

(10)), which include both 𝑥 and 𝑦 variables, are modified as follows, using 𝑥𝑖𝑗𝑣∗ to denote the solution

of the 𝑥-variables obtained in the first phase:

𝑦𝑖𝑗𝑣 ≤ 𝑘𝑣𝑥𝑖𝑗𝑣∗ ∀ 𝑖, 𝑗, 𝑣 (70)

∑ (𝐿𝑦𝑖𝑣𝐿𝑖∈𝑁0 + 𝑈𝑦𝑖𝑣𝑈) ≤ 𝑇 −∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑣∗𝑖,𝑗∈𝑁0:𝑖≠𝑗 ∀ 𝑣 ∈ 𝑉 (71)

In these modified constraints, note that (70) in fact sets to zero all 𝑦𝑖𝑗𝑣 variables whose equivalent

𝑥𝑖𝑗𝑣∗ variables are equal zero. This is equivalent to removing all those variables, as indeed performed

by the pre-solver. This modifies, indirectly, constraints (3) and (14), so that they are defined only for

22

𝑦𝑖𝑗𝑣 variables whose equivalent 𝑥𝑖𝑗𝑣∗ variables are equal to one. The modified constraints (71) is a

tighter version of the time constraint (10), where the total travel time of a vehicle is subtracted from

both sides of the inequality. The modifications with respect to the valid inequalities (19)-(23) are

similar to those described above.

The solution to (P1'') delivers a feasible solution to (P1), with integer values of 𝑦𝑖𝑣𝐿 and 𝑦𝑖𝑣𝑈 and

with an objective value that is numerically shown (in Section 5) to be very close to the lower bound

obtained by solving (P1) without integrality constraints on these variables.

4.2 Arc Deletion
While the previous section described a way to (heuristically) overcome the integrality requirement

concerning the loading and unloading variables, in this section we focus on the routing variables (the

𝑥-variables) in the TI model with the goal of reducing their number significantly. In this case the

reduction is exact rather than heuristic, and results from the following geographical considerations. In

an urban environment, the movement of vehicles is limited to the road network and is subject to

various regulations such as “one way streets”, “no left turns”, etc. Consequently, the shortest valid

journey between a pair of stations is likely to pass via other stations. Thus, we can represent the

stations network as a sparse graph where stations (𝑖, 𝑗) are connected by an arc if only if there is no

other station, say 𝑘, such that 𝑡𝑖𝑘 + 𝑡𝑘𝑗 = 𝑡𝑖𝑗. Otherwise, the journey from 𝑖 to 𝑗 can be represented by

a path of two arcs, (𝑖, 𝑘) and (𝑘, 𝑗), which takes the same amount of time as the direct path from 𝑖 to 𝑗.

Using this observation, a significant number of variables that correspond to arcs may be reduced. This

idea is implemented by defining for all 𝑖 ∈ 𝑁0 the set 𝛿𝑖 = {𝑗 ∈ 𝑁0: 𝑡𝑖𝑗 < 𝑡𝑖𝑘 + 𝑡𝑘𝑗 ∀𝑘 ∈ 𝑁0}. Now

in order to accommodate this arc deletion concept, we revise the definition of the indices of the

routing variables, and possibly other related variables. For example, the x and y variables in (37) and

(38) are defined as follows:

𝑥𝑖𝑗𝑡𝑣 ∈ {0,1}, 𝑦𝑖𝑗𝑡𝑣 ≥ 0 ∀𝑖 ∈ 𝑁0, 𝑗 ∈ 𝛿𝑖 ,∀𝑣 ∈ 𝑉, 𝑡 = 1, … ,𝑇′, 𝑣 ∈ 𝑉

In addition, reference to undefined variables should be removed by revising all constraints in which

these variables appear.

Note that the above arc deletion procedure is different from the heuristic concentration

method, see e.g., Rosing and ReVelle (1997). The latter is a known approach to reducing the number

of arcs by using information from previous runs, but it cannot assure that the removed arcs are not

part of the optimal solution. Our procedure, on the other hand, removes only arcs that, for certainty,

can be replaced by alternative paths with the same cost. To the best of our knowledge, this idea is

new. By using the arc deletion procedure, we drastically reduce the size of our mixed integer program

and increase the size of instances that can be solved in a reasonable amount of time. In the largest

instances that we tested, about 80% of arcs could be removed.

23

Note that the above method may not be applied to the AI (resp., SB) formulation because in this

formulation each vehicle is allowed to visit each station (resp., station’s node) only once. If visits are

“wasted” on constructing routes to other nodes when the inventory or the residual capacity on the

vehicle is not sufficient to serve the station, then this limitation becomes too restrictive. However the

idea of arc deletion may be beneficial for arc index formulations of other vehicle and inventory

routing problems, when the order of the visits at the nodes is not important. The arc deletion idea is

also not directly applicable to the SI formulation since its decision variables correspond to stops rather

than arcs.

4.3 Parameter Setting
In this section we highlight several issues that need to be addressed when selecting parameter values

for our models. Our goal is to find values that enable solving large problem instances, possibly at a

moderate cost of optimality or the validity of the obtained lower bound. We note that since the static

repositioning problem is solved by the operator on a daily (or nightly) basis, the value of the

parameters that suite best the system at hand, can be learnt over time.

In the TI formulation, a major parameter that affects the difficulty of solving the problem on one

hand, and the model’s accuracy (or flexibility) on the other hand, is the value of the period length, 𝜏.

As in most discretized models, when the length of a period gets larger, it becomes easier to solve the

problem due to the reduced number of variables, but the solution is less adaptive to desired changes,

since decisions are taken less frequently. The choice of 𝜏 must clearly be related also to the prevailing

times in the bike sharing system for which a solution is sought.

In the SI formulation, 𝐴 represents an upper bound on the number of stops in the trip of each

vehicle. 𝐴 can be safely chosen to be 𝑇/ mini≠j∈N0 𝑡𝑖𝑗, but typically this number is significantly

higher than the actual number of stops in the optimal solution. Reducing 𝐴 reduces the number of

decision variables in a linear rate, and this helps solving the problem. If 𝐴 is chosen to be smaller than

the (unknown in advance) optimal number of stops, the optimal solution of the resulting problem is

worse than the optimal solution with the unbinding number of stops, however, since the ability to

solve the former is likely to be better than the latter, it still may produce better results, especially

under a time limit constraint. This issue is examined in our numerical experiment in Section 5.

5. Numerical Experiments
In this section we demonstrate the performance of the mixed integer programming formulations

introduced in Section 3, together with the algorithmic enhancements presented in Section 4, when

solving instances of practical size. We first present results of three of our formulations that were

applied on 24 instances that are based on data of the Vélib system. Then we applied the formulation

24

that performed best on an entire real system consisting of 104 stations of Capital Bikeshare in

Washington DC.

In our first numerical experiment we created a set of 24 benchmark problems based on actual

locations of some 60 Vélib stations located in Paris’ First quarter. We conducted an experiment with

all combinations of the following parameter values:

• Number of nodes – 30, 45, and 60 nodes, where the smaller instances are subsets of the larger

ones.

• Number of vehicles – one and two vehicles.

• Length of the planning horizon – 2.5 hours and 5 hours.

• Penalty functions, based on demand patterns – two penalty functions were considered where

the first is based on a fictitious (but likely a representative) demand pattern while the second

is based on an estimated demand pattern from data that we collected from the Vélib website

during some ten working days. The initial inventory levels at the stations were selected

randomly. The distance matrix was calculated based on the L1 (Manhattan) metric. The

distances are given in meters and the average speed of the vehicles is assumed to be one

meter/second. The loading and unloading times were set to be 1 minute/bicycle. The vehicle’s

capacity was set to 20 bicycles which is the capacity of the light trucks used by Vélib. The

location of the depot was selected arbitrarily in the First quarter. The capacity and the initial

inventory of the depot were set to be large enough so that they were not binding. The dataset

for our benchmark problems is available through the first author’s website at

http://www.eng.tau.ac.il/~talraviv/ under “Publications”.

We implemented the Arc Indexed formulation (AI), the Arc Indexed formulation with two phases

(AI2), the Time Indexed formulation with two phases (TI2) and the Sequence Indexed formulation

with two phases (SI2) using IBM-Ilog OPL and solved the above instances using IBM-Ilog CPLEX

on an Intel Xenon X3440 @ 2.53GHz with 8GB of RAM. In all our experiments we used CPLEX

default settings and set the solver time limit to two hours. For the two phase procedure the time limit

was imposed only on the first phase, since the time needed to perform the second phase was

negligible in all instances and formulations (less than one second). Under such time limit, the main

memory was never exploited. The optimality tolerance was left with CPLEX’s default of 0.0001. That

is, the solver stopped whenever a provable optimality gap of 0.01% was obtained.

We also experimented with the Swapping Based model and the single phase Time Indexed and

Sequence Indexed formulations, but we found that many of our instances could not be solved to

optimality and even did not result in solutions that are within a reasonable optimality gap. Hence, we

do not report on these results.

We first describe an experiment conducted to evaluate the effect of the two-phase procedure, by

comparing AI and AI2, as reported in Table 2. The four left columns of the table describe each

instance in terms of number of vehicles, penalty function, number of nodes and the length of the

http://www.eng.tau.ac.il/~talraviv/�

25

planning horizon in hours. The next four columns summarize the performance obtained from the AI

formulation. The first two report on the lower bound and the best integer obtained for each instance.

We then present the provable relative optimality gap, calculated according to the CPLEX convention,

that is,

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝 (𝐴𝐼) = 𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

.

The next column presents the CPU time required to solve the instance within the optimality

tolerance, where 7200 seconds (two hours) means that CPLEX stopped before achieving a solution

within the optimality tolerance and thus only values lower than 7200 represent the time needed to

solve the problem to optimality.

The next six columns present similar information on our experiments with the AI2 formulation.

The lower bound column is the lower bound obtained in the first phase, which is the only valid lower

bound we obtain using this formulation. In the column headed “Phase 1”, the value of the best integer

solution (with respect to the routing variables) obtained in phase 1 is presented. Recall that this

solution is not necessarily an integer feasible solution of the problem at hand because it may (and

typically does) include fractional loading and unloading quantities. Under “Phase 2” we present the

solution obtained by this formulation and under “Relative Gap” we compare the second phase

solution with the first phase lower bound, by computing:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝(𝐴𝐼2) = 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 2−𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑝ℎ𝑎𝑠𝑒 1
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 2

.

The column “Phase 2 Gap” represents a post-priori upper bound on the loss of optimality incurred by

the decomposition of the problem into two phases and is calculated as follows:

𝑃ℎ𝑎𝑠𝑒 2 𝐺𝑎𝑝 = 𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 2−𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 1
𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 2

.

For each instance we denote in bold face the lower bound, best integer and CPU time that were best

among the two formulations.

It is apparent from Table 2 that the phase 2 gap incurred by this decomposition is close to

negligible (0.17% on average and 0.34% in the worst case). We observe that while the AI formulation

is capable of providing slightly better solutions for instances with one vehicle and small number of

nodes, AI2 outperforms AI for the larger (and harder) instances, both in terms of best integer solution

and valid lower bound obtained. The average optimality gap for AI is 3.69% while for AI2 it is

2.41%. Moreover, for the two vehicle instances the figures are 7.24% vs. 4.54%, respectively. The

instance with the largest optimality gap when solving by AI had a gap of 11,1% while the instance

with the largest optimality gap when solving by AI2 had a gap of 6.28% only. For all the smaller

instances that can be solved to optimality within two hours, AI2 converge faster with only one

exception.

As expected, the performances of both formulations are adversely affected by both the number of

nodes and the number of vehicles. Interestingly, the performances seem not to be significantly

26

affected by the length of the planning horizon. In AI2, the average optimality gap is not significantly

affected by the length of the planning horizon or by the penalty function type. The former may imply

that while geographical decomposition of the problem may be beneficial, there is no benefit in

temporal decomposition when using this formulation.

We note that in order to obtain a tight upper bound on the number of arcs in the route of each

vehicle, M, we formulated an integer program. We solved this program for each of the six

combinations of distance matrices and planning horizon lengths in very few minutes. This

preprocessing operation can be carried out once for each bike-sharing system and used repeatedly

every day as long as the distance matrix and time allotted to the repositioning operation remains

unchanged. Thus, we decided not to include these times in the processing times reported in Table 2.

It is worth mentioning that although most of the larger instances could not be solved to optimality

within two hours, most of the progress towards the obtained solution was carried out by the solver

during the very first minutes. That is, the AI and AI2 formulations are applicable even under much

tighter time constraints.

Next, we present the results of our experiment of the Time Indexed formulation with the two

phase procedure (TI2) and while applying the arc deletion enhancement. We applied this formulation

to all of our 24 instances with two different time discretization levels, namely 300 seconds and 450

seconds per period, resulting in 48 runs in total. None of the problems converged to optimality within

the two hour time-limit, but high quality solutions could be obtained for many instances. In five of the

instances a feasible solution could not be obtained within the two hour time-limit.

A summary of the results is presented in Table 3. The columns headings of this table are similar

to those of Table 2 and thus we omit their description here. The phase 2 objective function values

were all within 1% of those of phase 1 and thus the latter are not reported in the table. Cells related to

instances that could not be solved within the time limit were left blank.

It is apparent from Table 3 that the performances of the time indexed formulation, similarly to the

arc indexed formulation, are adversely affected by the number of vehicle and the number of nodes in

the network. In contrast with the former formulations, TI2 is also adversely affected by the length of

the planning horizon because it directly affects the number of variables in the model. This suggests

that when using the TI2 formulation, temporal decomposition of the problem may be beneficial.

We observed that the crude time discretization (𝜏 = 450 𝑠𝑒𝑐.) delivers better solutions for the

harder problem instances, while the finer time discretization (𝜏 = 300 𝑠𝑒𝑐.) which results in a much

larger mathematical model, yields better solutions only for few single vehicle instances, mostly with

smaller number of nodes. Indeed, the solver fails to solve, within the two hour time-limit, even the

root node of four out of the 24 problem instances when using the fine time discretization and only one

instance when using the crude time discretization.

27

Instance AI AI2

vehicles Penalty
function

Nodes T (Hours) Lower
Bound

Best
Integer

Relative
Gap

CPU
Time
(Sec)

Lower
Bound

Phase 1 Phase 2 Relative
Gap

CPU
Time
(Sec)

Phase 2
Gap

1

1

30
2.5 214.22 214.24 0.01% 73 213.76 213.76 214.5 0.35% 24 0.34%

5.0 167.05 167.07 0.01% 2519 166.74 166.74 167.1 0.22% 1036 0.21%

45
2.5 335.15 335.18 0.01% 1217 334.40 334.40 335.18 0.24% 939 0.23%

5.0 273.10 273.13 0.01% 3425 272.97 272.97 273.54 0.22% 1614 0.21%

60
2.5 457.94 460.86 0.63% 7200 460.54 460.54 461.32 0.28% 7200 0.17%

5.0 382.34 382.38 0.01% 1002 382.30 382.30 382.38 0.03% 966 0.02%

2

30
2.5 139.52 139.52 0.00% 5 139.49 139.49 139.52 0.02% 14 0.02%

5.0 109.32 109.33 0.01% 5811 109.16 109.16 109.52 0.34% 2796 0.33%

45
2.5 203.21 203.23 0.01% 151 203.11 203.11 203.73 0.31% 125 0.30%

5.0 166.27 166.29 0.01% 2958 166.00 166.00 166.37 0.23% 2343 0.22%

60
2.5 286.89 289.55 0.92% 7200 289.32 289.32 289.76 0.98% 7200 0.15%

5.0 242.57 242.59 0.01% 313 242.32 242.32 242.59 0.12% 129 0.11%

2

1

30
2.5 157.24 171.49 8.31% 7200 171.72 171.72 171.84 5.84% 7200 0.07%

5.0 113.37 116.62 2.79% 7200 116.44 116.43 116.62 2.50% 7200 0.16%

45
2.5 257.85 280.73 8.15% 7200 279.17 279.17 279.68 4.51% 7200 0.18%

5.0 185.50 198.86 6.72% 7200 197.71 197.71 197.95 4.00% 7201 0.12%

60
2.5 364.40 400.34 8.98% 7200 399.52 399.52 399.53 5.69% 7200 0.00%

5.0 269.04 302.63 11.10% 7200 291.78 291.78 292.27 4.55% 7200 0.17%

2

30
2.5 103.98 109.18 4.76% 7200 108.75 108.75 108.9 2.65% 7200 0.13%

5.0 66.45 69.04 3.76% 7200 68.94 68.94 69.13 4.00% 7200 0.27%

45
2.5 154.37 168.06 8.15% 7200 167.56 167.56 168.01 4.69% 7200 0.27%

5.0 107.49 115.9 7.26% 7200 115.04 115.04 115.07 4.49% 7200 0.02%

60
2.5 230.51 253.28 8.99% 7200 251.00 251.00 251.52 6.28% 7200 0.21%

5.0 173.14 188.02 7.92% 7200 187.44 187.44 187.64 5.32% 7200 0.11%

Table 2: Results for the Arc Indexed and Arc Indexed with two phases Models

Overall, the optimality gaps are much larger with the TI2 formulation with both fine and crude

time discretization, compared to the AI2 formulation. Additionally, the actual best solution obtained

by TI2 was inferior to that of AI2 in 20 out of the 24 instances.

We note that the lower bounds and optimality gaps obtained by both time discretization levels are

not exactly comparable with those of the arc indexed formulation. This is since the TI2 model allows

more flexibility in the routing decisions and in loading and unloading operations, so that the optimal

solution value of this model is generally lower. Moreover, the lower bounds of TI2 with different

time discretization levels are not comparable, since the finer discretization level provides more

flexibility.

28

Instance Crude Time Disc. (𝝉 =450 sec.) Fine Time Disc. (𝝉 =300 sec.)

Trucks
Penalty
function Nodes

T
(hours) Lower Bound

Second
Phase Relative Gap Lower Bound

Second
Phase Relative Gap

1

1

30
2.5 204.84 215.19 4.81% 202.78 214.50 5.47%

5.0 151.98 172.74 12.02% 151.88 176.23 13.82%

45
2.5 318.05 334.74 4.98% 315.78 338.64 6.75%

5.0 246.08 279.03 11.81% 246.03 277.45 11.33%

60
2.5 437.84 460.82 4.99% 437.73 460.88 5.02%

5.0 354.15 386.35 8.34% 354.32 397.75 10.92%

2

30
2.5 134.94 140.37 3.87% 133.50 139.52 4.32%

5.0 99.04 110.20 10.13% 99.02 108.74 8.94%

45
2.5 192.32 203.73 5.60% 191.80 203.41 5.71%

5.0 151.04 169.54 10.91% 151.08 169.41 10.82%

60
2.5 273.54 290.49 5.83% 273.45 290.79 5.96%

5.0 226.97 251.07 9.60% 227.13 248.38 5.96%

2

1

30
2.5 155.47 174.44 10.88% 155.71 179.50 13.25%

5.0 112.05 152.51 26.53% 112.30 246.64 54.47%

45
2.5 254.45 285.03 10.73% 254.84 294.81 13.56%

5.0 182.49 369.80 50.65% - - -

60
2.5 365.02 416.36 12.33% 365.97 447.09 18.14%

5.0 - - - - - -

2

30
2.5 101.43 112.05 9.48% 101.68 112.79 9.85%

5.0 63.09 79.58 18.29% 65.39 106.13 38.39%

45
2.5 154.15 172.83 10.81% 154.54 179.61 13.96%

5.0 106.77 204.78 47.86% - - -

60
2.5 231.50 255.80 9.50% 231.89 268.21 13.54%

5.0 265.6133 538.14 50.64% - - -

Table 3: Results for the Time Indexed formulation with the two phase procedure and arc deletion (TI2)

Next, we present the results of our experiment with the SI2 formulation over the same set of 24

problem instances. As Discussed in Section 4.3, there is a need to set an upper bound, A, on the

number of stops per vehicle. We used two values for each time horizon: 𝐴 = 20 and 𝐴 = 30 for the

2.5 hours instances and 𝐴 = 40 and 𝐴 = 60 for the 5 hours instances, which provide the opportunity

to stop every 450 or every 300 seconds on average, and thus to keep in line with the time

discretization in our TI2 experiment, described above. None of the 48 runs converged to optimality

within two hours, but quite small optimality gaps were obtained for many of them. As with the former

formulations, the deterioration of the objective function value from the first to second phase was

negligible, 0.13% on average and 0.35% in the worst instance.

A summary of our experiment with SI2 is presented in Table 4. The structure of the table is

similar to that of Table 3. For each instance we report on the solutions obtained with a large number

29

of stops (30/60) and with a small one (20/40). We also report on the number of branch and bound

nodes explored by CPLEX and the actual number of stops (A.S) before reaching the depot for the last

time, in the obtained solution. For the instances with two vehicles, this figure represents the total

number of stops of both vehicles.

It is apparent from Table 4 that the SI formulation is relatively robust to the selection of the

number of stops parameter within the range that we tested. Indeed, in most cases better solution were

obtained with smaller number of stops (20/40), but the differences were minor, and in five cases,

better solutions were obtained with 30/60 stops. This fact is somewhat intriguing because we note that

in all of our runs the total number of stops was substantially smaller than the maximum stops allowed

by the A parameter, so one could expect that a lower value of A which results in a smaller number of

variables in the formulation would perform a lot better. It is also surprising that the number of branch

and bound nodes explored by CPLEX was substantially larger for the runs with smaller number of

stops. The fact that the number of stops is by far not binding in all of our runs suggests that the lower

bound obtained by this formulation is likely to be valid although this is not guaranteed.

Lastly, we compared the results obtained from the different formulations and parameter settings.

In Table 5 we present the values of the best solutions obtained for each instance using formulations

AI, AI2, TI2 with period lengths of 300 and 450 seconds, and SI2 with 30/60 stops and 20/40 stops.

The best known solution of each instance is set in boldface. It is apparent from the table that the arc

indexed formulation "wins" in most instances and in particular AI is the best in most of the single

vehicle instances and AI2 is the best in most of the harder, two vehicle instances. The two TI2

formulations combined deliver the best solution, by a small margin, to three out of the 24 instances,

but largely lag behind in most of the others.

In the last row of Table 5 we present the average relative deviation of the result obtained by the

corresponding method from the best known solution, obtained by one of the six methods. Instances

that could not be solved were not included in this average and hence the results for TI2 (the only

method that failed to solve some of the instances) is biased down. However, even with this bias it is

clear that on average TI2 is inferior to the two other formulations in terms of average performances.

The AI2 formulation was substantially better on average than all other methods while SI2 was in

between.

Overall, the AI2 formulation yielded good solutions to instances with up to 60 nodes and two

vehicles and thus may be a good tool to provide to operators of bike sharing systems. For systems of

moderate size the entire system may be solved together. For larger systems we believe that a practical

approach is to decompose the entire area into several geographical areas (clusters), such that a small

number of vehicles (say, up to three) perform repositioning in each area, with possibly a common

local warehouse (or a particularly large station), allowing the transfer of bicycles between different

areas, if needed. Such an approach is practical and easier to manage since it allows appointing an area

manager, responsible for a small number of drivers who become familiar with their area. It is, in fact,

30

a common practice in many distribution systems which consist of a large number of nodes. When

such a decomposition approach is used, our methods are likely to solve (to optimality or near

optimality) the resulting separate problems. A related question is clearly how to decompose the

system into separate areas, but this is beyond the scope of this paper.

Instance 30/60 stops 20/40 stops

Trucks Penalty
function Nodes T Lower

Bound
Second
Phase

Relative
Gap

B&B
Nodes A.S Lower

Bound
Second
Phase

Relative
Gap

B&B
Nodes A.S

1

1

30
2.5 194.12 214.52 9.51% 111315 10 198.97 215.07 7.49% 624229 10

5.0 140.28 169.15 17.07% 19950 18 140.29 170.66 17.80% 35942 21

45
2.5 305.79 336.88 9.23% 60756 10 307.91 336.85 8.59% 112293 11

5.0 236.18 283.49 16.69% 6549 17 236.03 275.59 14.36% 22616 18

60
2.5 427.53 464.07 7.87% 142283 10 430.38 464.02 7.25% 304196 9

5.0 337.75 400.68 15.70% 5217 17 342.30 385.85 11.29% 30807 19

2

30
2.5 129.12 139.52 7.46% 297993 12 130.83 139.52 6.23% 436290 12

5.0 82.93 108.90 23.85% 18052 18 83.68 109.17 23.35% 83329 19

45
2.5 186.40 203.41 8.36% 116618 11 188.26 203.41 7.45% 330590 11

5.0 134.45 168.90 20.40% 9468 20 135.20 167.96 19.50% 26741 18

60
2.5 268.43 289.76 7.36% 99155 11 269.23 289.98 7.16% 164690 11

5.0 207.95 251.01 17.15% 11019 19 209.40 251.12 16.61% 26035 19

2

1

30
2.5 140.71 172.16 18.27% 33917 21 140.87 172.10 18.15% 51560 21

5.0 107.58 123.77 13.08% 5334 33 107.58 117.41 8.37% 27557 39

45
2.5 236.71 285.77 17.17% 11265 19 236.72 284.03 16.66% 25313 23

5.0 172.39 215.63 20.05% 609 35 172.49 221.12 21.99% 1244 40

60
2.5 333.94 420.06 20.50% 1832 18 339.95 405.37 16.14% 38445 22

5.0 245.02 324.26 24.44% 823 32 245.40 328.62 25.33% 1460 31

2

30
2.5 83.50 109.51 23.75% 42923 21 83.85 108.95 23.04% 81216 22

5.0 52.87 73.36 27.93% 6460 36 52.87 69.46 23.88% 24932 40

45
2.5 135.42 168.14 19.46% 23421 21 135.79 168.40 19.37% 48069 22

5.0 84.35 123.83 31.88% 1145 46 84.39 131.96 36.05% 2376 33

60
2.5 206.41 258.41 20.12% 11471 22 209.09 256.09 18.35% 39999 22

5.0 132.91 215.00 38.18% 809 28 132.80 202.18 34.32% 2123 35

Table 4: Results for the Sequence Indexed formulation with the two phase procedure (SI2)

31

Vehicles
Penalty
function

Stations T AI AI2
TI2

𝜏=300
TI2

𝜏=450
SI2

30/60
SI2

20/40

1

1

30
2.5 214.24 214.50 214.50 215.19 214.52 215.07

5.0 167.07 167.10 176.23 172.74 169.15 170.66

45
2.5 335.18 335.18 338.64 334.74 336.88 336.85

5.0 273.13 273.54 277.45 279.03 283.49 275.59

60
2.5 460.86 461.32 460.88 460.82 464.07 464.02

5.0 382.38 382.38 397.75 386.35 400.68 385.85

2

30
2.5 139.52 139.52 139.52 140.37 139.52 139.52

5.0 109.33 109.52 108.74 110.20 108.90 109.17

45
2.5 203.23 203.73 203.41 203.73 203.41 203.41

5.0 166.29 166.37 169.41 169.54 168.90 167.96

60
2.5 289.55 289.76 290.79 290.49 289.76 289.98

5.0 242.59 242.59 248.38 251.07 251.12 251.12

2

1

30
2.5 171.49 171.84 179.50 174.44 172.16 172.10

5.0 116.62 116.62 246.64 152.51 123.77 117.41

45
2.5 280.73 279.68 294.81 285.03 285.77 284.03

5.0 198.86 197.95 - 369.80 215.63 221.12

60
2.5 400.34 399.53 447.09 416.36 420.06 405.37

5.0 302.63 292.27 - - 324.26 328.62

2

30
2.5 109.18 108.90 112.79 112.05 109.51 108.95

5.0 69.04 69.13 106.13 79.58 73.36 69.46

45
2.5 168.06 168.01 179.61 172.83 168.14 168.40

5.0 115.90 115.07 - 204.78 123.83 131.96

60
2.5 253.28 251.52 268.21 255.80 258.41 256.09

5.0 188.02 187.64 - 538.14 215.00 202.18

Average above best known 0.29% 0.08% 7.03% 9.64% 3.18% 2.45%

Table 5: Comparing the results obtained from the different models and parameters

We note that the flexibility of the AI2 model is limited compared to the SI2 and TI2 models and

thus the optimal solutions of these models are generally better than those of AI and AI2. However, as

the objective functions of all our models are exactly comparable, we learn from Table 5 that in spite

of its modeling limitations, AI2 achieves better solutions in most cases. We may infer from this

observation that for this problem, as in some other problems from the literature, good solutions may

be achieved by slightly simplifying the problem in a way that makes it computationally simpler.

Recall that we set the loading and unloading times of bicycles to one minute per unit. We believe

that this is a reasonable value when taking into account some overhead tasks of the repositioning staff

32

at the stations (e.g., checking the mechanical status of the bicycles and lockers). However, if the

actual loading and unloading times are smaller, possibly thanks to automated equipment that aids to

perform these tasks, the transshipping of bicycles via third stations may became more attractive.

Under such conditions, since the TI2 formulation allows more flexibility with transshipments, this

method may perform better. In addition, both SI2 and TI2 may perform better in situations where the

capacity of the vehicles is smaller compared to the capacity of the stations and thus multiple visits at

each station is required.

In our second experiment, we applied our model and solution method on real problem instances

obtained from the operator of Capital Bikeshare in Washington DC. The distance matrix represents

real driving times between each pair of stations. The arrival rates of renters and returners at each hour

of the day on regular weekdays were estimated based on a complete transaction log collected during a

three months period starting November 1, 2010. Moreover, since the demand in Capital Bikeshare

during this period was low and the system was in its early stages of implementation, we created

another set of instances with the same network but with demand rates multiplied by two and stations'

size multiplied by 1.5. This set is referred to as the “inflated” set. A user dissatisfaction function for

each of the systems' 104 stations was created based on the above demand data and station capacity.

We solved the static repositioning problem of these systems using one and two vehicles with time

horizon of 2.5 hours and 5 hours. The capacity of the vehicles in the instances below is set to 25, the

same as the light trucks used by the operator of Capital Bikeshare. In Table 6 we present the results

obtained from solving the AI2 formulation with a time limit of two CPU hours. In the table, we

present the following three measures for each problem instance (columns 4-6):

• Initial value - the value of the objective function when no repositioning is performed, i.e.,

each station remains with its initial inventory of bicycles. This is a naive upper bound for the

problem.

• Ideal value - the value of the objective function given the optimal inventory of bicycles at

each station, ignoring capacity and time constraint on the repositioning vehicles. This is an

obvious lower bound.

• To add / remove - the total number of bicycles that needed to be added and removed from all

the stations in order to get from the initial state of the system to the ideal one.

For each instance we report on the Integer Programming lower bound, upper bound (best integer

solution), and calculate the relative optimality gap as in the previous tables. In addition, we report on

the actual number of bicycles that were added/removed in the best integer solution found. Finally, in

the right most column, we report on the ratio between the total number of bicycles that were added

and removed in the actual solution and the number that should be added and removed in order to get

to the ideal solution. This ratio is referred as “Job done”.

33

Instance AI2 Solution
Demand /

station size
Vehicles T

(Hours)
Initial
Value

Ideal
Value

to add /
remove

Lower
Bound

Best
Integer

Relative
Gap

Added /
Removed

Job
Done

Original

1
2.5

284.29 189.33
150/
197

222.60 227.53 2.17% 43/43 24.78%

5.0 197.33 200.21 1.44% 83/83 47.84%

2
2.5 194.87 206.01 5.41% 77/76 44.09%

5.0 189.33 197.28 4.03% 119/126 70.61%

Inflated

1
2.5

592.48 413.57
242/
314

509.50 510.87 0.27% 48/48 17.27%

5.0 451.23 456.65 1.19% 96/96 34.53%

2
2.5 447.26 471.88 5.22% 84/84 30.22%

5.0 414.11 431.53 4.04% 150/150 53.96%

Table 6: Comparing the results obtained from the different models and parameters

It is apparent from the table that high quality feasible solutions with optimality gaps of few

percents can be obtained using our solution method. There is no significant difference between the

optimality gaps of the original instances and the inflated ones. This implies that the method is robust

to the traffic volume of the system. The optimality gaps of the two vehicles instances are larger than

those of the single vehicle ones. Surprisingly, the optimality gaps of the 2.5 hours instances are larger

than those of the 5 hours instances in three out of four cases. As expected, the value of the objective

function decreases as the number of vehicles and time allotted to the repositioning increases. In

correspondence, the share of the job done is also increased.

We observe that even when the objective function value of the best solution found is close to the

ideal value and far apart from the initial one, the share of the job done is significantly smaller than

100%. See for example, the fourth and last instances in the table. This is due the fact that the

dissatisfaction function is convex and typically almost flat around its minimum. Indeed, it seems that

in some stations the operator is almost indifferent between the exact optimal inventory and many

other possibilities close to it. We believe that this very phenomenon justifies the use of dissatisfaction

functions rather than setting target values for the inventory at each station and solving a "many to

many" single commodity pickup and delivery problem with a standard objective function. Indeed, the

operator should allocate its limited repositioning capacity to the stations that are expected to face the

largest number of shortage events during the next day.

6. Conclusions and discussion
This paper defines and formulates a new rich inventory routing model that is motivated by the need to

regulate the new emerging bike sharing systems. Proper regulation of these systems by repositioning

bicycles among the stations is an important factor in the success of these systems. This paper is the

first attempt to consider all aspects of the static repositioning problem, to formulate it as a mixed

34

integer linear program and address various technical obstacles that arise in solving large instances.

Indeed, we offer four, essentially different formulations, based on different modeling assumptions. In

all our models the objective is to minimize the expected cost of events in which the service cannot be

provided. Due to the stochastic nature of the demand for bicycles, this objective function turns to be

non-linear. We build on previous results that establish the convex nature of this function in order to

linearize it.

In addition to the immediate contribution to the domain of bike-sharing system management, we

believe that some of the concepts developed in this paper are relevant to other inventory routing and

pickup and delivery problems. In particular, our methods may be applicable to other inventory routing

problems with stochastic demand. Furthermore, the concept of arc deletion, described in Section 4.2,

may be useful to many other complex routing problems.

Since we address a new problem, it can be extended in many different directions. One is

examining the effect of substitutability and complementarity of the demand function among stations.

This relaxes our current assumption that demand at different stations is independent. Although we

believe that our notion of user dissatisfaction is a good approximation of reality, verifying this point is

currently under investigation.

One may argue that a fixed amount of time needs to be added every time the vehicle stops at a

station, in addition to the linear loading and unloading times that are already included in our model.

This case can be handled by adding the fixed time to the travel times between stations. Note however,

that then it will not be possible to use the arc deletion method as is. To use our TI (and TI2) models, a

new set of binary variables denoting actual stops at stations (rather than passing through them) should

be introduced. One binary variable is required for each period and for each vehicle.

Proceeding to a higher level of the system design, an important extension of our models may be

the inclusion of several depots in the system. We believe that the operator may benefit from using

several stations, located where space is not costly, as secondary depots. These stations may be used to

reduce the total distance traveled by the reposting vehicles and serve as a local buffer to meet

fluctuating demand during peak times. In fact, the inclusion of such an extension in the SI and TI

models only requires a change of the parameters (station capacities and penalty functions). The AI

model can accommodate multi-depots with minor changes. A similar related extension is allowing

each vehicle to set its base node at a different location.

We demonstrate that our various MILP formulations are capable of solving problem instances of a

moderate size of up to 60 stations with acceptable optimality gaps. The AI2 formulation can be used

to solve realistic instances with two vehicles and 104 stations. However, larger systems such as Vélib,

Bixi or Bicing consist of many hundreds of stations. Our method is applicable to such systems when

used in conjunction with a geographical decomposition approach. Another possible approach is to use

heuristic methods such as Tabu search or Genetic Algorithm, that exhibited good performances in

other large scale rich routing problems, see, for example, Bräysy and Gendreau (2005).

35

Finally, we focused in this paper on the static repositioning problem, where bicycles are moved

during slack hours when the system is nearly inactive. The dynamic version of the problem requires a

different solution approach. In that case, the demand (resp., returns) in each station depletes (resp.,

increases) its inventory level due to the user’s activity at the same time the repositioning is carried

out. Since the TI model already uses decision variables which keep track of the inventory level at each

station in each time period (𝑠𝑖𝑡), the corresponding inventory balance constraints (constraints (27))

may be adjusted to reflect the dynamic situation. This can be achieved by reducing from the right

hand side of (27) the forecasted net demand, and adding variables that represents unsatisfied demand

for bicycles and lockers or waiting time of users at the stations. The objective function should be

modified to represent the cost incurred by this “lost sales” and waiting times of users. While other

solution approaches may be more appropriate for the dynamic version of the problem, the solution of

a linear integer programming formulation may be useful as a benchmark.

Acknowledgment: The authors wish to thank Mr. Brodie Hylton and Mr. Danny Quarrel from Alta Bicycle
Share Ltd. for providing data on the Capital Bikeshare and Mr. Avraham Edison for help in processing the
demand data.

References
Anily, S. and Hassin, R. (1992) The swapping problem. Networks, 22, 419-433.

Anily, S., Gendreau, M. and Laporte, G. (1999) The swapping problem on a line. SIAM J. on
Computing, 29(1), 327-335.

Benchimol, M., Benchimol, P., Chappert, B., Taille, A.D.L, Laroche, F., Meunier, F. and Robinet, L.
(2010) Balancing the stations of a self service “bike hire” system. RAIRO Operations Research,
forthcoming.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I. and Laporte, G. (2007) Static pickup and delivery
problems: a classification scheme and survey. TOP, 15, 1-31.

Bertazzi, L., Savelsbergh, M. and Speranza, M.G. (2008) Inventory Routing. In: "The Vehicle
Routing Problem: Latest Advances and New Challenges" Edited by Golden, B., Raghavan, S. and
Wasil, E. Springer.

Bordenave, C., Gendreau, M. and Laporte, G. (2010) Heuristics for the mixed swapping problem.
Computers & Operations Research, 38, 108-114.

Bräysy, O. and Gendreau, M. (2005) Vehicle routing problem with time windows, Part II:
metaheuristics. Transportation Science, 39, 119-139.

Callé, E. (Director of Operation in Vélib), April 2009, Personal communication.

Capoor, K. and Ambrosi, P. (2009) State and trends of the carbon market 2009, The World Bank,
Washington, DC.

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Gendreau%2C+Michel&possible1zone=author&maxdisp=25&smode=strresults&aqs=true�
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Laporte%2C+Gilbert&possible1zone=author&maxdisp=25&smode=strresults&aqs=true�
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Y1g6oHNIO2omC39m@aj&page=1&doc=1&cacheurlFromRightClick=no�
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Y1g6oHNIO2omC39m@aj&page=1&doc=1&cacheurlFromRightClick=no�
http://www.springerlink.com/content/?Author=Luca+Bertazzi�
http://www.springerlink.com/content/?Author=Martin+Savelsbergh�
http://www.springerlink.com/content/?Author=Maria+Grazia+Speranza�

36

Chemla, D., Meunier, F. and Wolfler Calvo, R. (2010) Bike hiring system: solving the rebalancing
problem in the static case. Working paper.

Forma, I., Raviv, T. and Tzur, M. (2010) The Static Repositioning Problem in a Bike-Sharing System.
In the proceeding of the 7th Triennial Symposium on Transportation Analysis (TRISTAN), Tromsø,
Norway, 279-282.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004a) A branch-and-cut algorithm for a traveling
salesman problem with pickup and delivery. Discrete Applied Mathematics, 145, 126-139.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004b) Heuristics for the one-commodity pickup-
and-delivery traveling salesman problem. Transportation Science, 38, 245–255.

Lin, J-R. and Ta-Hui, Y. (2011) Strategic design of public bicycle sharing systems with service level
constraints. Transportation Research Part E, 47, 284–294.

Louveaux, F. and Salazar-González, J.-J. (2009) On the one-commodity pickup-and-delivery traveling
salesman problem with stochastic demands. Mathematical Programming Ser. A, 119, 169–194.

Miller, C.E., Tucker, A.W. and Zemlin, R.A. (1960) Integer programming formulations and traveling
salesman problems. J. ACM, 7, 326–329.

MetroBike LLC. (2011) http://bike-sharing.blogspot.com/2010_12_01_archive.html, observed in
July 21, 2011.

Mukai N. and Watanabe, T. 2005. Dynamic location management for on-demand car sharing system,
Knowledge-Based Intelligent Information and Engineering Systems. 9th International Conference,
KES 2005, Melbourne, Australia, 768-774.

Nair, R. and Miller-Hooks, E. (2011). Fleet management for vehicle sharing operations.
Transportation Science. Forthcoming.

Nair, R., Miller-Hooks, E., Hampshire, R.C. and Busic, A. (2011) Large-scale bicycle sharing
systems: analysis of Velib. Working paper.

Raviv, T. and Kolka, O. (2011). Dynamic management of stock levels in a bike sharing system.
Working paper.

Rosing, K.E. and Revelle, C.S. (1997) Heuristic concentration: two stage solution construction.
European Journal of Operational Research, 97(1), 75-86.

Shu, J., Chou, M., Liu, Q., Teo, C-P. and Wang, I-L. (2010) Bicycle-sharing system: deployment,
utilization and the value of re-distribution. Working paper.

Uesugi, K., Mukai, N. and Watanabe, T. (2007) Optimization of vehicle assignment for car sharing
system. In: Lecture notes in artificial intelligence, Intelligent knowledge: knowledge-based intelligent
information and engineering systems. 1105-1111.

Vogel, P. and Mattfeld, D.C. (2010) Modeling of repositioning activities in bike-sharing systems.
Proceeding of the 12th World Conference on Transport Research, July 11-15, 2010, Lisbon, Portugal.

http://bike-sharing.blogspot.com/2010_12_01_archive.html�

37

Appendix A – User Dissatisfaction Function
For completeness of our paper, we summarize here some of the results of Raviv and Kolka (2011). In

particular, we formally define the user dissatisfaction function and show how to approximate it.

We consider a single bike-sharing station over a finite horizon [0, T] with the following setting:

the inventory level (number of bicycles) in the station at time 0 is given. At time t ∈ [0, T], users who

wish to rent (resp., return) a bicycle arrive at the station according to some non-homogenous Poisson

process with rate µt (resp., λt). If the requested service can be provided right away, the bicycle is

rented or returned and the inventory level is updated accordingly. If the service cannot be provided

(i.e., due to an empty station for a renter or a full one for a returner) then the user abandon the station.

In reality, the abandoning user may decide to seek the service in other stations of the system but this is

out of the scope of this model. Thus, there are two undesirable types of events that may occur in a

station. We assume that the system is penalized for each one of them.

p Penalty charged for each renter that abandon due to shortage of bicycles.

h Penalty charged for each returner that abandon due to shortage of vacant lockers

The state of the station is a bounded birth and death process with birth rate µt and death rate λt. The

process is depicted as a Markov Chain in Figure 2.

Let πij(t) denote the probability of the station being at state j at time t provided that its initial

state at time 0 was i. It is possible to express the user dissatisfaction function, F(x), where x denotes

the initial inventory level (of bicycles) as follow:

𝐹(𝑥) ≡ � (𝜋𝑥0(𝑡)𝑝 + 𝜋𝑥𝐶(𝑡)ℎ)
𝑇

0
𝑑𝑡.

The first summation term in the integral represents the expected user dissatisfaction accumulated

due to abandonments of renters and the second due to abandonments of users. In the numerical section

of this paper we used p = h = 1. Thus the value of the user dissatisfaction function represents the

expected number of unserved users during the period [0, T].

Next, we note that while the arrival rates of renters and returners are non-homogenous over time,

it is reasonable to assume that these rates vary in a finite number of steps over the planning horizon,

say every 15 or 30 minutes. Now, our strategy to estimate F(x) is as follows: the planning horizon is

discretized into short periods, each of length δ, say δ = 1 minute. These periods are indexed by θ. For

each period θ we evaluate the transition probability matrix from the beginning of the period to its end.

Figure 2: Continuous time Markov chain that represents the dynamics of the bicycles inventory level

C-1

1

0

𝜆𝑡

𝜆𝑡

 𝜇𝑡 𝜇𝑡

Empty Station C

𝜆𝑡

 𝜇𝑡

Full Station

38

We denote this transition probability by Pθ. Now the transition probability matrix from time 0 to time

t = τ ⋅ δ is given by

𝝅(𝑡) = �𝑃𝜃

𝜏

𝜃=1

.

Pθ can be calculated numerically, for more details see Ross (2010) Section 6.8. Based on the value of

π(t) we can obtain a reliable approximation of the user dissatisfaction function using the following

discretization procedure:

𝐹(𝑥) ≈ 𝛿�(𝜋𝑥0(𝑡 + 0.5𝛿)𝑝𝜇𝛿𝜃 + 𝜋𝑥𝐶(𝑡 + 0.5𝛿)ℎ𝜆𝛿𝜃)

𝑇
𝛿−1

𝜃=0

.
(72)

Raviv and Kolka (2011) also established bounds for the estimation error and showed that for a

discretization level of one minute the user dissatisfaction function can be estimated very accurately in

a fraction of a second for each of the stations in Washington’s BSS. They also proved that the user

dissatisfaction function is convex.

The objective function in this paper is the sum of dissatisfaction functions, one for each station,

The function for each station i is evaluated through (72) for each possible inventory level 0 ≤ x ≤ 𝑐𝑖 .

Appendix B – Swapping Based Formulation
In this appendix we provide details on the SB formulation and how its unique characteristics are

formulated compared to the AI formulation.

Recall the additional parameter introduced in Section 3.5:

𝑠𝑖∗ the quantity of bicycles which minimizes the cost function 𝑓𝑖(.) at station 𝑖;

We further define:

𝑁′(𝑖) set of duplicated stations, representing original station 𝑖, 𝑑𝑖 ≡ |𝑁′(𝑖)| = �𝑠𝑖0 − 𝑠𝑖∗�,

∀𝑖 ∈ 𝑁; The duplicated nodes are denoted by 𝑁′(𝑖) = {1(𝑖), 2(𝑖), … ,𝑑𝑖(𝑖)}; We use 𝑖′ and 𝑗′

as indices for stations in 𝑁′(𝑖) and 𝑁′(𝑗), respectively, 𝑁′(0) = {0};

𝑝𝑖′(𝑖)
+ = 𝑓𝑖(𝑠𝑖∗ + 𝑖′) − 𝑓𝑖(𝑠𝑖∗ + 𝑖′ − 1) penalty (cost) for not visiting the (𝑖′)𝑡ℎ duplicate station of

station 𝑖, when station 𝑖 is a supply node, i.e., 𝑠𝑖0 > 𝑠𝑖∗, 𝑖′ ∈ 𝑁′(𝑖), 𝑖 ∈ 𝑁;

𝑝𝑖′(𝑖)
− = 𝑓𝑖(𝑠𝑖∗ − 𝑖′) − 𝑓𝑖(𝑠𝑖∗ − 𝑖′ + 1) penalty (cost) for not visiting the (𝑖′)𝑡ℎ duplicate station of

station 𝑖, when station 𝑖 is a demand node, i.e., 𝑠𝑖0 < 𝑠𝑖∗, 𝑖′ ∈ 𝑁′(𝑖), 𝑖 ∈ 𝑁;

 The decision variables are defined as follows:

𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣 a binary variable which equals one if vehicle 𝑣 travels directly from station 𝑖′(𝑖) to

station 𝑗′(𝑗), and zero otherwise;

𝑦𝑖′(𝑖)𝑗′(𝑗)𝑣 quantity of bicycles carried on vehicle 𝑣 when it travels directly from station 𝑖′(𝑖) to

station 𝑗′(𝑗), and zero if the vehicle does not travel directly between these nodes;

39

𝑞𝑖′(𝑖)𝑣 auxiliary variables, used for sub-tour elimination constraints;

The swapping based (SB) formulation is similar to the arc indexed formulation, where each

station represents a copy of the original one, and therefore denoted by 𝑖′(𝑖) instead of 𝑖. Similarly, the

variables 𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣 and 𝑦𝑖′(𝑖)𝑗′(𝑗)𝑣 are used in the SB formulation in a similar way to 𝑥𝑖𝑗𝑣 and 𝑦𝑖𝑗𝑣 in

the AI formulation, and 𝑞𝑖′(𝑖)𝑣 in a similar way to 𝑞𝑖𝑣. Additional differences are associated with

constraints related to station capacities and to the vehicle conservation constraints, as explained next.

Note first that by the network representation described above, the capacity of all duplicated stations is

in fact one. This is not expressed explicitly in the formulation, however it is implied by removing the

variables 𝑦𝑖𝑣𝐿 , 𝑦𝑖𝑣𝑈 and 𝑠𝑖, which all include quantity of bicycles. In the SB formulation, all these

quantities are either one or zero. In particular, the vehicle conservation constraints (3) are replaced by

the following two sets of constraints, which distinguish between supply and demand nodes:

∑ ∑ (𝑦𝑖′(𝑖)𝑗′(𝑗)𝑣𝑖′(𝑖)∈𝑁′(𝑖) + 𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣)𝑖∈𝑁 = ∑ ∑ 𝑦𝑗′(𝑗)𝑘′(𝑘)𝑣𝑘′(𝑘)∈𝑁′(𝑘)𝑘∈𝑁 (73)

 ∀ 𝑗 ∈ 𝑁,∀ 𝑗′ ∈ 𝑁′(𝑗) ∶ 𝑠𝑗0 > 𝑠𝑗∗,∀𝑣 ∈ 𝑉

∑ ∑ (𝑦𝑖′(𝑖)𝑗′(𝑗)𝑣𝑖′(𝑖)∈𝑁′(𝑖) − 𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣)𝑖∈𝑁 = ∑ ∑ 𝑦𝑗′(𝑗)𝑘′(𝑘)𝑣𝑘′(𝑘)∈𝑁′(𝑘)𝑘∈𝑁 (74)

 ∀ 𝑗 ∈ 𝑁,∀ 𝑗′ ∈ 𝑁′(𝑗) ∶ 𝑠𝑗0 < 𝑠𝑗∗,∀𝑣 ∈ 𝑉

The loading/unloading times can be easily incorporated within the traveling matrix, since every

visit to a node is associated with a known operation of either loading or unloading one unit, depending

whether it is a supply or a demand node, respectively. Therefore, given an instance in which the

supply and demand node sets are known, all travel times of arcs entering a supply (resp., demand)

node are modified by adding to them L (resp., U) time units.

Finally, the objective function of the SB formulation is to minimize the total penalty incurred for

not visiting supply and demand stations. The penalty for not visiting a certain station is calculated

from the cost function as described above. Note that since the original cost function is convex, the

"correct" visit order will be obtained automatically for all duplicated stations of the same original

station, that is, the (𝑖′)𝑡ℎ duplicated station (representing, e.g., the (𝑠∗ + 𝑖′)𝑡ℎ unit) will be visited

before the (𝑖′ − 1)𝑠𝑡 station is visited. To represent the objective function, we define the following

two sets of original nodes:

𝑁+ = �𝑖: 𝑠𝑗0 > 𝑠𝑗∗� and 𝑁− = �𝑖: 𝑠𝑗0 > 𝑠𝑗∗�

Then, the objective function is:

∑ 𝑓𝑖(𝑠𝑖∗)𝑖∈𝑁 + ∑ ∑ 𝑝𝑖′(𝑖)
+ �1 − ∑ ∑ ∑ 𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣𝑗′(𝑗)∈𝑁′(𝑗)𝑗∈𝑁𝑣∈𝑉 �𝑖′(𝑖)∈𝑁′(𝑖)𝑖∈𝑁+ +

 ∑ ∑ 𝑝𝑖′(𝑖)
− ∑ �1 − ∑ ∑ 𝑥𝑖′(𝑖)𝑗′(𝑗)𝑣𝑗′(𝑗)∈𝑁′(𝑗)𝑣∈𝑉 �𝑗∈𝑁𝑖′(𝑖)∈𝑁′(𝑖)𝑖∈𝑁− (75)

In conclusion, the SB formulation consists of extensions (to duplicated stations) of constraints (4)-

(6) and (10)-(12), where in (12) the first term on the left hand side of the constraint is omitted and the

travel times are modified as explained above, plus the modified constraints (73)-(74), with the

objective function (75).

	Abstract
	1. Introduction
	2. Literature Review
	3. Model Formulation
	3.1 Notation
	3.2 Arc-Indexed Formulation

	4. Algorithmic Enhancements
	4.1 A Two-Phase Solution Method
	4.2 Arc Deletion
	4.3 Parameter Setting

	5. Numerical Experiments
	6. Conclusions and discussion
	References
	Appendix A – User Dissatisfaction Function

