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Abstract

In this paper we state and study the problem of selecting a product mix and a

dispatching rule for a jobshop system in order to maximize its revenue rate over an

infinite planning horizon.

We solve the problem of obtaining maximum revenue by selecting a product

mix and determine a schedule. The designed algorithm appropriately rounds an

optimal solution to a fluid relaxation in which we replace discrete jobs with the flow

of a continuous fluid. The algorithm solves the fluid relaxation optimally and then

aims to keep the discrete schedule close to the continuous one obtained by the fluid

solution. The schedule obtained is cyclic, with bounded WIP and asymptotically

optimal.

A secondary aim is to further reduce the WIP and the buffers’ sizes by shortening

the cycle length. This is achieved at the cost of a slight compromise on the revenue.

We report on satisfactory computational results on some benchmark instances.



1 Introduction

In this paper we state and study the problem of selecting a product mix and a dispatching

rule for a jobshop system in order to maximize its revenue over an infinite planning

horizon. More precisely, we consider the Infinite Horizon Maximum Revenue Job Shop

Problem which is the following jobshop like problem. A set of R potential product types

can be produced using a set of M machines. The revenue obtained from the system is

given by a general function of the production rates of the various products. The aim

is to determine a product mix and a schedule that maximizes the long run revenue rate

obtained from the system. This problem was motivated by problems faced in, for example,

semiconductor production lines, where a manufacturer owns a network of flexible machines

and his objective is to maximize the revenue while attempting at keeping low production

costs.

Our solution approach follows a growing body of research regarding the applications

of fluid view for the optimization and analysis of discrete flow system. Bertsimas and

Gammarnik (1999) and Bertsimas and Sethuraman (2002) have devised algorithms that

approximate the minimum makespan in the jobshop problem within an additive constant

from the lower bound Cmax which is the total load on a most loaded machine. This

constant depends on the total number of product types, the length of the routes and

the processing times of the operations on the machines but not on Cmax itself. Hence as

the number of jobs of each type grows the ratio between the makespan of the obtained

solution and the lower bound converges to one. Boudoukh et al. (2001), have presented a

cyclic schedule for a high multiplicity version of the jobshop problem where the number

of jobs of each type r to be processed is n · jr with the jrs being integers and n, a large

integer number. Their solution is based on the idea of building safety stocks of d jr

2
e units

in the system buffers. They provided a schedule that, by utilizing the above safety stocks,

works at the same rate as a fluid counterpart system. Thus, the approximation is within

the constant time needed to create the required safety stocks and to empty the system

at the end. This method is particularly effective in the typical situation where n is large

while the jrs are small. Boudoukh et al. (2001) also devised a dispatching rule, based on

the fluid solution, that is shown numerically to be effective for high multiplicity jobshop

problem with random processing times under the makespan objective function.

Dai and Weiss (2002) considered the problem of minimizing the makespan in jobshop

setting with random processing times where there are N identical jobs in each route.

They proposed a simple dispatching heuristic and proved that under some assumptions

on the distribution of the processing times, the obtained solution exceeds the optimal one

by at most c log N for some constant c, with probability higher than 1− 1/N .
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Bertsimas et al. (2003) provided an algorithm for approximating the high multiplicity

jobshop problem with holding cost objective based on relaxed fluid solution of the problem.

They have shown that the algorithm is asymptotically optimal and performs better than

many known heuristic methods on benchmark problems, even for problems with moderate

degree multiplicity.

A closely related branch of literature focuses on methods to solve hard instances of the

fluid control problem. Such solutions can then be used by the above mentioned methods

to approximate jobshop problems and for other applications, e.g., control of queuing

networks. Two recent representatives of this trend are Weiss (2001) and Fleischer and

Sethuraman (2003).

The problem discussed in this paper differs from the ones studied in the above men-

tioned papers in the sense that the actual product mix to be produced is not exogenously

given but is to be decided within the model. We show that an optimal value of the fluid

version of the problem can be attained, asymptotically, using our proposed dispatching

policy on the discrete system providing that sufficient safety stocks are initially accu-

mulated. Our dispatching policy is closely related to the Revised Fluid Synchronization

Algorithm proposed in Bertsimas et al. (2003) and the idea of initially creating some

safety stocks follows Boudoukh et al. (2001). That is, the obtained schedule starts by

building up a sufficient level of safety stocks in the system’s buffers and then continue in

cyclic manner while keeping the bottleneck machine busy continuously.

Indeed, we show that our dispatching rule leads to a cyclic schedule, but, unfortunately,

the number of products per cycle may be arbitrarily large. We then show that the required

safety stocks can be bounded above by a constant which does not depend on the cycle

length, but only on the known processing times of the operations. However, our upper

bounds may still lead to fairly large safety stocks.

A further reduction of the safety stocks and WIP can be gained by shortening the

cycles. We achieve this goal by modifying the optimal product mix solution in a way that

slightly compromises on the optimality of the product mix while significantly reduces the

cycle length. A compact Mixed Integer Linear Program (MILP) is solved in order to

construct this new short cycle.

We examine our method on a large set of benchmark problems and show that it is

possible to construct solutions with revenue rate of 99% of the optimum with cycles

consisting of very few items.

In Boudoukh et al. (2001) it is shown that the safety stock needed for each operation

in a cyclic schedule is bounded above by approximately half of the items per cycle. Hence

reduction of the cycle length is likely to result in a schedule that requires small amount
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of safety stock. Furthermore, in this study, we show that the total level of WIP is closely

related to the total amount of safety stocks.

In addition, with shorter cycles it is possible to employ exact combinatorial opti-

mization methods to further reduce the required safety stock and the average levels of

intermediate inventory.

The rest of this paper is organized as follow: In Section 2 we provide formal definition

of the problem and presents its fluid relaxation. In Section 3 we construct our fluid based

dispatching rule, explore its cyclic nature and prove its asymptotic optimality using the

relation between the fluid and the discrete solutions. In Section 4 we show how to construct

an approximately optimal schedule with shorter cycle. The practicality of our method is

supported by extensive numerical experiments presented in Section 5. We conclude with

a short discussion in Section 6.

2 Problem Definition and Fluid Approximation

We consider the following Infinite Horizon Maximum Revenue Job Shop Problem which

is a jobshop like problem over an infinite planning horizon. Consider a set of R product

types and a set of M different machines. The production process of a product of type r

consists of a series of Kr operations that should be carried out on a subset of the machines

according to a predetermined order. We refer to this order as the product route and to an

unfinished product as a job. That is, a completed job is a product. We allow re-entrant

policy, that is, any machine may appear several times along a product route.

In our model each machine works on at most one job at a time and a product can be

processed by at most one machine at a time. We consider non-preemptive policy, that is,

an operation cannot be aborted before it is finished. The aim is to construct a schedule

that maximizes the revenue rate achieved if the system is to be operated indefinitely.

The revenue rate of the firm, assuming all its production activity is carried out by

the system, is a function of its production rate for each of its products. Let us denote

the average production rate for product r by xr. For a price taker firm in a perfectly

competitive market, if the market price of product r is Pr then the revenue rate is clearly∑R
r=1 xrPr. More generally the total revenue is a function f : RR → R. Such a function

can capture market power if ∂2f(x)
∂2xr

< 0 (i.e., decreasing marginal revenue), ∂2f(x)
∂xr∂xq

< 0 for

each pair r 6= q of substitutional products and ∂2f(x)
∂xr∂2xq

> 0 for each pair of complementary

products. We can take f(x) as the gross profit function, i.e., the revenue net of variable

production costs, such as labor and raw material. In such a case f(x) may capture eco-

nomics of scale. Note however f(x) does not include costs that are affected by scheduling
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decisions, such as holding costs of work in process.

The oth operation of route r is denoted by (r, o) and the time needed to carry out

operation (r, o) is denoted by Tr,o. The machine that processes operation (r, o) is denoted

by Mr,o. Let σi be the set of operations carried out by machine i. σ(r, o) denotes the

set of all operations carried out by the same machine as operation (r, o) and σ(r, o)− ≡
σ(r, o) \ {(r, o)}. Consider the jobs on route r that by time t have completed operation

(r, o − 1) but have not yet started operation (r, o). We say that these jobs are located

in the buffer of operation (r, o) and we denote their number by Br,o(t). We note that

according to our definition there is no buffer before operation (r, 1) for each route r.

Naturally, Br,o(t) ≥ 0. However, for methodological purpose we initially assume that

Br,o(t) is allowed to go negative and later on remove this assumption.

Let B+
r,o(t) be the total number of jobs of type r which by time t have completed

operation (r, o − 1) but have not yet completed operation (r, o). That is, B+
r,o(t) ∈

{Br,o(t), Br,o(t) + 1}. We set B+
r,1(t) = 1 if the first operation of product of type r is

processed at time t, and B+
r,1(t) = 0 otherwise. Jobs within the system are called Work

In Process (WIP). The total WIP in the system at time t is
∑R

r=1

∑Kr

o=1 B+
r,o(t).

Next, we define a fluid counterpart system of the discrete system described above.

In this system along each product route, fluid is continuously processed. The flow rate

of fluid of type r at stage (r, o) when machine Mr,o devotes all its effort to process it is
1

Tr,o
. However, in the fluid system the machines capacity and the “jobs” are infinitely

devisable. Our fluid system start its operations with empty buffers. As in the discrete

model, a revenue rate is associated with outflow rate of the system.

The goal of the auxiliary fluid jobshop problem is to maximize the revenue rate ob-

tained from the fluid that comes out of the system. Note that an optimal solution of the

fluid problem can be achieved without safety stock and WIP.

The solution to the fluid problem is given by the following simple Mathematical Pro-

gram:

Mathematical Program 2.1

max f(x1, ..., xr)

∑
(r,o)∈σi

Tr,oxr ≤ 1 ∀i = 1, ...,M (1)

xr ≥ 0 ∀r = 1, ..., R.

Mathematical Program 2.1 can be a challenging optimization problem if the function

f(x) is not concave or not smooth. On the other hand if f(x) is linear then the problem
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is reduced to the classical product mix model. Solution procedure for this problem is

outside the scope of this study. In the sequel we will assume that an arbitrarily accurate

rational approximation x∗ for the solution of the problem is given. We note however that

an optimal solution always exists since the feasible solution set of 2.1 is compact for all

non negative Tro.

For the convenience of the reader we added a list of notations in Appendix B.

3 The Fluid Based Dispatching Rule Procedure

In this section we present our main result, a method to construct an infinite schedule for

the discrete system based on the optimal solution of its fluid counterpart. Our schedule

consists of two phases: The initialization phase and the main phase. The initialization

phase is finite and can be described by the starting times of each operation on its machine.

The infinite main phase is described by a dispatching rule, that is, a method to decide

upon the next operation of each machine whenever it is ready. A machine is said to be

ready at time t if it can start to process a job at that time.

Given our proposed dispatching rule for the main phase, the purpose of the initial-

ization phase is to build sufficient safety stocks to allow smooth operation of the system

during the main phase. That is, to enable the operation of the dispatching rule such

that whenever it tries to dispatch a job, this job is available in its buffer. The number

of jobs accumulated in the buffers, at the end of the initialization phase, is called safety

stock. The problem of calculating the minimum required safety stocks is discussed in

the sequel. For given required safety stocks, the initialization phase is equivalent to the

minimum makespan jobshop problem. This is an NP-hard and well known problem that

is not studied in this paper. Here we focus on the dispatching rule for the main infinitely

long phase. For methodological end, we will first assume that no initialization is carried

out and that the levels of the system buffers are allowed to go negative. Later on, we

will show that there exist finite levels of safety stocks that enable to remove the above

assumption.

We use the argument t to denote the time passed since the beginning of the main

phase. Thus, for each operation (r, o), the level of its safety stock used is Br,o(0). Let

Dr,o(t) denote the total number of operations of type (r, o) that were completed during

the time interval [0, t].

Recall that in the fluid counterpart system, each operation (r, o) is being processed at

a constant rate xr. Thus, during t units of time, t · xr units of fluid are transferred along

route r.
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Definition 3.1 The lateness of operation (r, o) at time t is Lr,o(t) = t · xr −Dr,o(t).

Note that at each point of time t, Lr,o(t) represents the difference between the amount

of fluid that was transferred along route r by time t in the fluid system, and the number

of jobs that completed operation (r, o) in the discrete system during the main phase. We

are now ready to present our proposed dispatching rule to control the operation of the

discrete system during the main phase.

Definition 3.2 (Fluid Based Dispatching Rule - FBDR) At any given time t, if

machine i is ready and max(r,o)∈σi
Lr,o(t) ≥ 0, then process a job from a buffer (r, o) where

this maximum attained. Otherwise, machine i stays idle until the situation is changed.

Ties are broken in favor of operations with the largest value of xr; if few operations have

equal value of xr, then the ties are broken by lexicographic order of the corresponding

(r, o)’s.

We note that this dispatching rule is similar to the Revised Fluid Synchronization

Algorithm (RFSA) proposed by Bertsimas et al. (2003) for the finite deterministic case

and to the Greedy Tardiness Rule proposed by Boudoukh et al. (2001) for the finite

stochastic case. The following lemma shows that under FBDR, the total amount of work,

in terms of working time, done by the discrete system over all machines, is at least as the

amount of work done by the fluid system.

Lemma 3.3 Consider a discrete system that operates under FBDR assuming buffer levels

are allowed to go negative. Then,
∑

(r,o)∈σi
Lr,o(t)Tr,o ≤ 0, at any time t when machine i

is ready.

Proof. We first show that the lemma holds whenever the machine is idle. Assume by

contradiction that the lemma does not hold for this case. Then, there must be at least

one operation (r, o) ∈ σi and a time t, when the machine is idle and Lr,o(t) > 0. Now, by

FBDR, the machine should have started performing operation (r, o) on an available job

in the buffer (and there is always an available job in the buffer since we allow the buffer

level to go negative). This contradicts the idleness of the machine.

Assume a point of time t2 when the machine is ready but not idle. That is, an

operation has just finished being processed on the machine and the machine is about to

start processing its next operation. Let t1 denote the last time the machine switched

from idleness to busyness (if no such time exists, let t1 = 0, the starting time of the main

phase). Then,

∑
(r,o)∈σi

Dr,o(t2) · Tr,o −
∑

(r,o)∈σi

Dr,o(t1) · Tr,o = t2 − t1, (2)
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since the machine was busy throughout the time interval [t1, t2]. On the other hand, by

constraint (1) and the fact that t2 ≥ t1 we have,

t2 ·
∑

(r,o)∈σi

xr · Tr,o − t1 ·
∑

(r,o)∈σi

xr · Tr,o ≤ t2 − t1. (3)

Subtracting (2) from (3) we obtain,∑
(r,o)∈σi

Lr,o(t2)Tr,o −
∑

(r,o)∈σi

Lr,o(t1)Tr,o ≤ 0.

By the first part of this proof,
∑

(r,o)∈σi
Lr,o(t1)Tr,o ≤ 0, implying∑

(r,o)∈σi

Lr,o(t2)Tr,o ≤ 0.

�

We turn now to show that using FBDR creates cyclic schedules. We start with a

formal definition of this intuitive notion.

Definition 3.4 Cyclic Schedule: A schedule is called cyclic with a cycle length d if at

any time t, the system status is the same as in t + d. By system status we refer to the

type of operation carried out on each machine, the elapsed times of these operations since

their beginning, and the WIP level in the systems’ buffers.

We note that in a cyclic schedule, the number of products of each type delivered from

the system during the interval (t0 + nd, t0 + (n + 1)d] is the same for all n = 0, 1, 2, . . ..

Proposition 3.5 The schedule obtained by applying FBDR, in its main phase, is a cyclic

one.

Proof. In the first part of this proof we will show that Lr,o(nd) = Lr,o((n + 1)d) = 0

for all non-negative integers n. Then we will show that this implies the cyclic nature of

the schedule obtained by FBDR.

Recall that the main phase starts at time t = 0 and let d be a common denominator

of x1, ..., xR, where x = (x1, ..., xR) is a solution of Mathematical Program 2.1. Note that

none of the (ndxr + 1)st operations of route r could have been started before time nd.

This is since, if for some operation (r, o), Dr,o(t) = ndxr at t < nd (i.e., the (ndxr)
th

operation was completed before time nd) then its lateness will remain negative until time

nd. However, in such a case, the next operation would not be dispatched by FBDR.

Hence,

Lr,o(nd) ≥ 0 (4)
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for all (r, o) and integer n. Now, if for some machine i, Lr,o(nd) = 0 for all (r, o) ∈ σi,

then we are done with the first part of the proof. If, however, Lr,o(nd) > 0 for some (r, o)

then at time nd machine i is working on one of the first ndxr instances of (r, o). Let us

denote the completion time of the (r, o) operation that is in process at time nd by t′. At

this time, t′, we will have

Dl,u(t
′) ≤ ndxl < t′xl (5)

for all operations {l, u} ∈ σi. To see why the first inequality holds consider first operations

(l, u) ∈ σi\(r, o). These operations are not processed in the time interval [nd, t′] and hence

Dl,u(t
′) = Dl,u(nd) ≤ ndxl. Now, operation (r, o), that is completed at time t′, was in late

at time nd. Hence Dr,o(t
′)− 1 = Dr,o(nd) < ndxr and by the integrality of Dr,o(t) and of

ndxr the weak inequality follows. The second inequality in (5) holds simply by the facts

that nd < t′ and xl > 0.

Next, by (5) we have t′xl −Dl,u = Ll,u(t
′) > 0 for all (l, u) ∈ σi and thus∑

(l,u)∈σi

Ll,u(t
′)Tl,u > 0.

But, this contradicts Lemma 3.3. Hence, it must be the case that Lr,o(nd) = 0. Now by

Lemma 3.3 and (4) we have that Lr,o(nd) = 0 and Dr,o(nd) = ndxr. That is, the number

of the (r, o) operations that are carried out during a cycle is dxr.

Since this is true for all the operations along route r, the number of jobs entered buffer

(r, o) from machine σ(r, o− 1) at time nd, is the same as the number of jobs coming out

of the buffer by machine σ(r, o), at that time. Hence, Br,o(nd) = Br,o((n + 1)d) for all

positive integers n.

That is, at time (n + 1)d, the system state, in terms of buffer levels, machine status

and lateness, is the same as at time nd and a new identical cycle starts. �

The following observations follow directly from the above proof.

Corollary 3.6 Given a system that operates under FBDR, with respect to some solution

x1, . . . , xR of the fluid problem, we obtain a cyclic schedule such that:

1. The smallest common denominator of the flow rates x1, ..., xR is the cycle length d.

2. The number of instances of operation (r, o) carried out during any cycle is d · xr.

3. At any point of time nd, for any n = 0, 1, . . ., all the machines are ready and

Lro(nd) = 0 for all the operations (r, o).
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One simple but important implication of Corollary 3.6 is that the (negative) buffer

levels are bounded from below by the number of operations per cycle. That is FBDR can

be implemented without allowing negative buffer levels by applying an initialization phase

in which sufficient safety stocks is accumulated in the system buffers before starting to

operate the system under FBDR. In the sequel we present bounds on the required safety

stocks that do not depend on the number of operations per cycle. We first show that,

when applying FBDR, the lateness of each operation (r, o) can be bounded from above

by a constant that is independent of xr and d.

Proposition 3.7 When operating a jobshop using FBDR and allowing negative buffer

level,

Lr,o(t) <

∑
(l,u)∈σ(r,o)− Tl,u

Tr,o

.

Note that the above bound on the lateness is independent of the time t. Intuitively,

Proposition 3.7 states that once a job is late on a machine it will not wait more than

the time needed to process one instance of each of the other jobs that share the same

machine, where the time units are measured in units that are equal to its own processing

time. The formal proof is long and technical, hence, it is presented in Appendix A, where

we also provide some tighter upper bounds for the lateness. We have chosen to present

the above bound because of its simplicity. In the sequel we will use γr,o to denote such

an upper bound on the lateness regardless of how it was established. Next, we will show

that the existence of an upper bound on the lateness implies lower bound on the buffer

levels if negative levels are allowed.

Lemma 3.8 Assume a jobshop is operated under FBDR and negative buffer levels are

allowed. Then, Br,o(t) ≥ −dγr,o−1e for all t.

Proof. If the system starts with empty buffers then at time t the number of jobs that

are waiting for operation (r, o) at the buffer or on the machine, is

B+
r,o(t) = D(r,o−1)(t)−Dr,o(t).

By the definition of the lateness,

B+
r,o(t) = D(r,o−1)(t)− txr + txr −Dr,o(t) = −Lr,o−1(t) + Lr,o(t).

Note that Br,o(t) decreases only at those points of time t when there is an operation

(r, o) to be started on the machine. Hence, it is enough to prove the validity of our lower

bound only for these points of time. Now, at these times, by the definition of FBDR, we

have Lr,o(t) ≥ 0. Hence we have,
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B+
r,o(t) ≥ −Lr,o−1(t) > −γr,o−1.

Now, since B+
r,o(t) denotes the number of jobs it must be an integer, either positive or

negative. Hence,

B+
r,o(t) ≥ b−γr,o−1 + 1c.

Therefore, the number of jobs waiting at the buffer is bounded below by

Br,o(t) ≥ b−γr,o−1c = −dγr,o−1e.

�

The result of Lemma 3.8 can be intuitively explained as follow: since an operation may

reach its maximum lateness while the next operation down its route keeps up with the

fluid solution, the maximum possible “deficit” of jobs equals the lateness of the previous

machine. Using this observation, we can remove the assumption that the system buffer

levels are allowed to go negative. Instead, we will start with sufficiently large safety stocks

implying that the actual buffer levels remain non-negative.

Proposition 3.9 In a system operated under FBDR, if Br,o(0) = dγr,o−1e for each (r, o)

then Br,o(t) ≥ 0 for all t.

Proof. Follows directly from Lemma 3.8.�

We note that the upper bound for the required safety stocks for a system operated

under FBDR provided by Proposition 3.9, differs from other upper bounds obtained for

previously presented dispatching rule, e.g., by Boudoukh et al. (2001), in the sense that

our bound is independent of the number of operations per cycle. Below we prove that

FBDR is an asymptotically optimal policy for the Infinite Horizon Maximum Revenue

Job Shop Problem.

Theorem 3.10 Let x be a solution of Mathematical Program 2.1. Assume a system

operates under FBDR, relative to x, with sufficient safety stocks for t units of time.

Then, the revenue rate of the discrete system converges to the revenue rate of its fluid

counterpart system as t →∞ .

Proof. It is enough to show that at any point of time t, the number of products of type

r delivered from the discrete system by that time is within a constant (independent of t)

from the amount of fluid that comes out of the corresponding route by that time. The
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difference between these two values is Lr,Kr(t) = txr−Dr,Kr(t), which by Proposition 3.7,

is bounded above by a constant and hence implies the correctness of the theorem. Note

also that even if the initialization phase is included, the theorem holds since this phase is

finite. �

Theorem 3.10 implies that by applying FBDR we maximize the revenue rate of the

discrete system in the asymptotic sense. In the rest of this section we will explore the

dynamics of the WIP presented in the system throughout the main phase. For this end

we will construct a lower bound on the lateness.

Lemma 3.11 Assume a system operates according to FBDR with sufficient safety stocks.

Then, at any given time t and for any operation (r, o), the following inequality holds

Lr,o(t) ≥ −1 + xrTr,o.

Proof. Recall that Lr,o(t) is an increasing function of t, except at those points of time

when operation (r, o) is completed and the function decreases by one. That is, Lr,o(t)

achieves its global minimum either upon the termination of an operation of type (r, o), or

at the beginning where Lr,o(0) = 0. Consider an instance of operation (r, o) that starts

at time t0 and terminates at time t0 + Tr,o. Then, Dr,o(t0 + Tr,o) = Dr,o(t0) + 1, implying

Lr,o(t0 + Tr,o) = (t0 + Tr,o)xr − (Dr,o(t0) + 1) = Lr,o(t0)− 1 + xrTr,o ≥ −1 + xrTr,o.

The last inequality is due to the fact that under FBDR, jobs are dispatched at time t0

only if Lr,o(t0) ≥ 0. �

In other words, since under FBDR, a job is processed only when it is late as compare

to the fluid system, the discrete system cannot precede its fluid counterpart by more

than one job. Also observe that since for any produced product r, xr > 0, we have that

Lr,o(t) > −1. The following proposition provides an upper bound on the level of WIP,

B+
r,o, in each particular operation (r, o) resulted by applying FBDR.

Proposition 3.12 For all t, using FBDR with sufficient safety stocks implies that,

B+
r,o(t) ≤ Br,o(0) + 1 + bγr,o − xrTr,o−1c.

Proof. Recall that Br,o(0) is the amount of safety stock used and observe that at

any point of time t, B+
r,o(t) equals the amount of safety stock plus the number of jobs

completed operation (r, o− 1) minus the number of jobs completed operation (r, o). That

is,

B+
r,o(t) = Br,o(0) + Dr,o−1(t)−Dr,o(t).
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By the definition of the lateness, Dr,o(t) = t · xr − Lr,o(t) and so,

B+
r,o(t) = Br,o(0) + [t · xr − Lr,o−1(t)]− [t · xr − Lr,o(t)],

implying

B+
r,o(t) = Br,o(0)− Lr,o−1(t) + Lr,o(t).

By Lemma 3.11, Lr,o−1(t) ≥ −1 + xrTr,o−1, and by Proposition 3.7, Lr,o(t) < γr,o. Hence,

B+
r,o(t) < Br,o(0) + γr,o + 1− xrTr,o−1.

Since both B+
r,o(t) and Br,o(0) are integers, it follows that

B+
r,o(t) ≤ Br,o(0) + 1 + bγr,o − xrTr,o−1c,

which completes the proof. �

We note that the required safety stock for operation (r, o) is primarily affected by the

maximum possible lateness of its preceding operation, that is, maxt Lr,o−1(t); while the

required buffer space, which is the maximum level of WIP, is affected by the lateness of

both the previous and the current operations. The following proposition shows that in

systems with long routes, the total WIP levels are approximately the same as the total

required safety stocks.

Proposition 3.13 When a system is operated under FBDR, the maximum fluctuation

of the WIP levels from the initial safety stocks, over all buffers and machines of a given

route r is bounded by

−dγr,1e ≤
Kr∑
o=1

B+
r,o(t)−

Kr∑
o=2

Br,o(0) ≤ dγr,Kre

at any time t.

Proof. First, observe that at any given time, the number of jobs along any route

equals: the number of jobs in the system at the beginning of the main phase (safety

stocks) plus the number of jobs that started their first operation since the beginning of

the phase, minus the number of jobs that completed their last operation. Observe that the

number of jobs that started their first operation by time t, is either Dr,1(t), or Dr,1(t)+1.

Therefore,

Dr,1(t)−Dr,Kr(t) ≤
Kr∑
o=1

B+
r,o(t)−

Kr∑
o=2

Br,o(0) ≤ Dr,1(t)−Dr,Kr(t) + 1.
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Hence,

−Lr,1(t) + Lr,Kr(t) ≤
Kr∑
o=1

B+
r,o(t)−

Kr∑
o=2

Br,o(0) ≤ −Lr,1(t) + Lr,Kr(t) + 1.

Note that the total WIP level along a route increases only when a job starts being pro-

cessed by the first machine, and that at such times Lr,1(t) ≥ 0. The last observation,

coupled with the fact that Lr,Kr(t) < γr,Kr and the integrality of the total WIP, imply

that
Kr∑
o=1

B+
r,o(t)−

Kr∑
o=2

Br,o(0) ≤ dγr,Kre.

On the other hand, for all t we have Lr,Kr(t) > −1 and Lr,1(t) < γr,1. Coupled with

the integrality of the WIP level we conclude that,

Kr∑
o=1

B+
r,o(t)−

Kr∑
o=2

Br,o(0) ≥ −dγr,1e.

�

We note that although in many cases, the safety stocks and the WIP levels are of

comparable magnitude, there are situations where this is not the case, as demonstrated

by the following example. Consider a system of two machines and two product types.

Product I is processed solitarily by M2 for 100 units of time, while product II is first

processed by M1 for 2 units of time and then by M2 for a single unit of time. Consider an

optimal fluid solution, x1 = 1
200

and x2 = 1
2
. If the discrete system operates under FBDR,

then M1 starts processing product II every 2 units of time, and M2 starts with a single

unit of product II, continues by processing a single unit of product I for the next 100 time

units, and then processes 100 units of product II, one unit of product I, and so on. One

can easily check that the required safety stocks for this policy is a single unit of product

II in the buffer of M2, while the WIP level in front of M2 at t = 101 is B2,2(101) = 50.

Corollary 3.14 The maximum WIP per route, at any given time, is bounded above by∑Kr

o=1dγr,oe.

Proof. By Proposition 3.9, the maximum required safety stock for operation (r, o)

under FBDR, is dγr,o−1e. That is, the WIP at time zero is
∑Kr−1

o=1 dγr,oe. Now, by Propo-

sition 3.13 the WIP may grow by up to dγr,Kre during the operations of the system under

FBDR and so the total WIP never exceeds
∑Kr

o=1dγr,oe. �
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It is worth to stress here that the actual required safety stocks and buffers’ sizes for

any operation under FBDR, may be lower than the bounds presented here. Thus, a better

way to calculate, or estimate, the safety stock requirements is by simulation.

Due to the cyclic nature of the schedules created by FBDR, we can simulate our system

for a single cycle in order to calculate the exact minimal safety stock levels and buffers’

sizes required. As proposed by Boudoukh et al. (2001), we start the simulation with zero

level safety stocks but allowing the buffer level to be negative throughout the cycle. The

safety stock required for each buffer is the absolute value of the smallest level reached in

this buffer throughout the cycle. If such safety stock levels are used, then the maximum

WIP level throughout the cycle can be obtained by subtracting the minimum (negative)

WIP level from the maximum WIP level in the simulation. This maximum level of WIP

determines the space needed to be allocated for the system buffers. Note that the term

”simulation” is somewhat misleading in this context since we are simulating the operation

of a deterministic system - so this is not a Monte-Carlo simulation.

Note also that our schedule remains optimal under any modification of the sequence

and the timing of the operations within the cycle, as long as the number of operations

of each type and the cycle length are not modified. The problem of determining a cyclic

schedule that minimizes the average WIP level is NP-hard already for two machines job-

shop problem, see Kamoun and Sriskandarajah (1993). However, the cyclic schedule can

be “improved” by various methods. See for example Hanen (1994), Lee and Posner (1997),

Boudoukh et al. (2001) and Hall et al. (2002). The composition of a cycle (dx1, . . . , dxR)

is generally referred to as Minimal Part Set (MPS) in the cyclic scheduling literature.

Typically in the literature, an MPS assumed to consist of a small number of products of

each type; this is unfortunately not the case for the cycles produced by our method.

4 Reducing the Cycle Length

In this section, we show how to construct a cyclic schedule for approximately optimal

product mix solution with shorter and smaller MPS. We then demonstrate our method

with small numerical example that illustrates the usage of the methods we proposed. Our

extensive numerical experiment in the following section shows that the obtained MPS is

indeed small enough for the purpose of further analysis and optimization.

A practical obstacle of taking advantage of the cyclic nature of the FBDR schedule

is that in an optimal solution of Mathematical Program 2.1, the common denominator

of (x1, . . . , xR) can be arbitrarily large and so the resulted MPS is likely to be very long.

However, the cyclic scheduling literature is based on the assumption that the MPS is

relatively small. Moreover, it might be even impractical to simulate one cycle of the
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schedule in order to check what are the actual required safety stocks. Indeed, one can

resort to the upper bounds provided by Proposition 3.9. Unfortunately, these upper

bounds are generally loose. Thus, a better way to overcome this difficulty may be to

search for much smaller MPS by slightly compromising on the optimality of the product

mix solution.

For the case of linear revenue function, f(x) =
∑R

r=1 Prxr, we use the following Mixed

Integer Linear Program (MILP) to obtain an MPS that yields revenue rate within a

pre-specified ratio from the optimum:

Mixed Integer Program 4.1

min
∑
r∈R

Krjr

∑
(r,o)∈σi

Tr,ojr ≤ d ∀i ∈ M (6)

∑
r∈R

Prjr ≥

(
δ
∑
r∈R

Prx
∗
r

)
· d (7)

d ≥ ε (8)

j ∈ NR, d ∈ R.

Here we use x∗, an optimal solution of Mathematical Program 2.1, as data. The

decision variables are jr, which indicate how many instances of each operation along

route r should be carried out during a cycle, and d the cycle length. Constraint (6)

assures that the selected MPS is consistent with the cycle length. Constraint (7) assures

that the ratio between the average revenue per time unit in the constructed cycle and

the revenue per time unit in the fluid counterpart system, is at least δ, which is the

pre-specified desired approximation ratio. Constraint (8) is aimed to eliminate the trivial

solution d = 0 and jr = 0 for all r. Without this constraint, the optimal solution of the

Mixed Integer Program is always d = 0 and jr = 0, for all r, which imply a solution

with an undefined ratio of 0/0. ε can be chosen to be any small enough positive number.

However, to enhance numerical stability, it is better to choose ε to be as large as possible.

Thus we set ε = minr maxi

∑
(r,o)∈σi,xr>0 Tr,o. Clearly, the length of any non-empty cycle

is larger than the time it takes to process each of the operations of any given route on

any machine. Note that if x∗r = 0 for all r, then it is indeed unworthy to produce at all.

In this case, the right hand side of the second constraint of the mixed integer program

vanished, and the solution obtained is jr = 0 for all r and d = ε.

Alternatively, the objective function could have been chosen to minimize the cycle

length d. However, since we aim at obtaining cycles that are as easy as possible to
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describe and analyze numerically, it seems more beneficial to have the “length” of a cycle

in terms of the number of operations and not in terms of units of time.

Using the solution of Mixed Integer Program 4.1, a new δ−approximate solution of

the fluid problem with x′r = jr/d is constructed, and is used as the basis for FBDR.

Note that 4.1 is a very lean mixed integer program with only |R| integer decision

variables and |M | + 1 constraints. Our numerical experiments show that in the compet-

itive (linear) case this program can be solved for problems with few tens of routes using

commercial solver in a very short time.

For the case of general (nonlinear) revenue function we can achieve the very same goal,

of reducing the size of the MPS, by replacing constraint (7) with,

f

(
j1

d
, ...,

jr

d

)
≥ δf(x∗).

A solution method for this non-linear program is out of the scope of this study but we note

that if the revenue function is increasing and concave in each of its arguments then MIP

4.1 remains a convex integer program. The numerical example and experiments hereafter

are all based on the linear revenue functions.

Finally we note that Mixed Integer Program 4.1 admits a feasible solution for any value

of δ ≤ 1. In particular, letting d be a common denominator of x1, ..., xR and jr = xr · d,

as in the proof of Proposition 3.5, is always a feasible solution. Nevertheless, using values

of δ very close to unity, say 1 − 10−5, may result in numerical instability caused by the

limited accuracy of the floating point representation used by the solver.

Numerical Example
Here we demonstrate some of the concepts presented in this paper on a small 4-

4-4 jobshop problem, that is, a problem with four product types, each consisting of 4

operations on 4 different machines. For this example we assume that the firm operates

in a perfectly competitive market. That is, the revenue function is linear. The relevant

data is presented in Table 1 below.

product product processing times product
number path M1 M2 M3 M4 price

1 2 → 3 → 1 → 4 4 7 12 15 27
2 1 → 4 → 3 → 2 11 14 17 19 70
3 4 → 3 → 2 → 1 7 15 12 8 44
4 3 → 2 → 4 → 1 13 10 12 15 51

Table 1: Sample data of small Infinite Horizon Maximum Revenue 4-4-4 Jobshop Problem.
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Solving Mathematical Program 2.1 for this problem returns;

x = (0.00000000001890, 0.00671140988385, 0.03355704684015, 0.04026845574536)

with the objective function value of about 4.02685. This result can be taken as is in

order to operate the system under FBDR. Observe that only very few jobs of type 1 are

produced while about 8% of the products are of type 2, 42% of type 3 and 50% are of

type 4. In order to operate the system with this solution, one can obtain upper bounds

on the required safety stocks by employing the results of Proposition 3.9 and Proposition

A.1 (in the appendix). These bounds are presented in Table 2 below.

The smallest common denominator of the values xr presented above is clearly huge

(greater than 1011). Generally, the common denominator cannot be calculated accurately

and its order of magnitude is mainly determined by the accuracy of the Linear Program-

ming solver. As discussed above, it might be better to use a slightly suboptimal solution

of Mathematical Program 2.1 with x′rs that admit much smaller common denominator

and yield schedules with shorter cycle lengths. We use Mixed Integer Program 4.1 to find

the shortest possible cycle that guarantees approximation ratio of say δ = 0.99. For our

demonstration problem, the solution for this program is j1 = 0, j2 = 1, j3 = 2, j4 = 2.

That is, each cycle consists of one product of type 2, and two products of types 3 and 4

each. No production of product of type 1 takes place. The cycle length for this case is

d = 65 compares to d > 1011 above. The expected revenue per time unit is about 4.0154,

which is approximately 0.997 of the optimal solution. One possible schedule for this cycle

is the one induced by FBDR with x = ( j1
d
, j2

d
, j3

d
, j4

d
) = (0, 1

65
, 2

65
, 2

65
).

The safety stocks required for this schedule are easily calculated by simulating the

system. Table 2 presents the actual required safety stocks for the problem presented in

Table 1 against the theoretical upper bounds obtained by Proposition 3.9.

Bounds Actual
product Safety Stock Safety Stock Products
number o=2 o=3 o=4 o=2 o=3 o=4 per Cycle

r=1 1 1 1 - - - 0
r=2 1 1 1 0 1 1 1
r=3 3 2 2 0 1 1 2
r=4 4 4 4 1 1 1 2

Table 2: Comparison between the upper bounds on the required safety stocks for the orig-

inal fluid based solution and the actual safety stocks needed for the short cycle obtained

by MIP 4.1 with δ = 0.99.
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5 Numerical Study

In this section we demonstrate the practicality of the methods described in the paper

using some famous benchmark jobshop problems, extended with a list of prices of the

products. We constructed two 10x10 and four 20x20 test problems, based on Adams

et al. (1988) (denoted by ’abz5’ and ’abz6’) and Yamada and Nakano (1992) (denoted

by ’yn1’,...,’yn4’), respectively. The test data sets were downloaded from OR-Lib at

“http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html”. In addition, since all OR-Lib

problems are of non re-entrant lines, while our approach treats re-entrant lines as well,

we generated three new problems. Each of the new problems consists of 10 machines, 20

product types, and each product route consists of 40 operations where each product may

visit the same machine several times, but any pair of consecutive operations are carried

out by different machines. The processing times of all operations in these examples

were sampled uniformly from the sets {10, . . . , 49}, {1, . . . , 99} and {1, . . . , 999}. These

problems are denoted by ’pr1’,’pr2’ and ’pr3’, respectively.

We believe that FBDR works well in cases where the processing times of the various

operations are of similar magnitude. Thus we “cooked” an extreme example, denoted by

’ext’ in order to examine the performance of our method in such extreme cases. Half of the

jobs in ’ext’ are “light” ones, while the other half are “heavy”. The processing times of all

light jobs, for all their operations, are uniformly sampled from the set {1, . . . , 10}, while

the processing times of all operations of the heavy jobs are uniformly sampled from the

set {990, . . . , 999}. As we expected, in such problems, the accumulated WIP is relatively

large and hence they may not fit the fluid approach very well. This is because during the

time a heavy job is processed, many light jobs may be accumulated in front of it, and

thus create relatively large WIP. Note however that this excessive WIP consists mainly

of the lighter jobs that are also likely to be cheaper to maintain within the system.

In this experiment we assume that the revenue function is linear. Hence, for each of

these ten jobshop problems we randomly generated 20 price vectors. Each such vector

assigns a price for each product type. The prices were taken from the Normal distribution

with mean µr =
∑Kr

o=1 Tr,o and σ2 equals the variance of the processing times over all

operations of route r, rounded to the nearest integer. By using prices proportional to

the total processing times of the jobs, we created instances with relatively many product

types to be produced in the optimal product mix, and avoid trivialization of the problem.

For each of the 200 test problems, we calculated the optimal fluid solution using

Mathematical Program 2.1 and then, use MIP 4.1 to obtain the shortest possible solution

that delivers revenue of at least 99% of the optimum. The MIPs were solved using CPLEX

8.0 on a mobile Pentium III , 1GHz with 384Mb RAM. The solution times of the programs
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solved ranged from fraction of a second to very few seconds in the worst case. Our test

data is available from our site at “http://eng.tau.ac.il/∼talraviv/Publications”. Once

we obtained the approximated solution, we translated it back into a suboptimal solution

of the fluid problem, and use this solution to create the appropriate FBDR policy for

each of the problems. We then simulate a single cycle for each such problem, to find

out the required safety stocks, buffer spaces and the average level of WIP. These results

are summarized in Table 3. Each line presents the average over the 20 different problem

instances, with different products prices.

In column 1 of Table 3 we present the name of each problem. Column 2 indicates

the dimensions of the problem as triplet (#machines - #product types - #operation per

products). In column 3, the range of the processing times for all operations is presented.

In column 4 we present the average number of product types that were actually produced

while using the optimal solution of MIP 4.1, with δ = 0.99. In both solution approaches,

and for virtually all the problems, the number of product types that were actually pro-

duced (jr > 0) was significantly less than R, the number of available routes. In column

5 we present the average number of products per cycle. Note that we present the cycle

length in terms of the number of products, and not in terms of the number of opera-

tions, in order to make a fair compression between systems with short and long routes.

In columns 6-8 we present the average required safety stocks per operation, the average

buffer sizes required (maximum buffer level throughout the cycle) and the average WIP

per operation for the cyclic schedules constructed by simulation using FBDR. All these

values are averages over all operations in all the problem instances of the same type.

Problem Problem Tr,o Product Products Average Average Average
name size Range types per cycle Safety Stocks Buffer sizes WIP

1 2 3 4 5 6 7 8

abz5 10-10-10 50-99 4.5 8.6 0.85 1.13 0.68
abz6 10-10-10 20-98 7.0 20.1 0.83 1.23 0.72
yn1 20-20-20 10-49 14.1 31.9 0.77 1.20 0.72
yn2 20-20-20 10-49 10.7 24.3 0.80 1.16 0.72
yn3 20-20-20 10-49 11.4 26.5 0.81 1.21 0.74
yn4 20-20-20 10-49 13.3 26.8 0.74 1.14 0.69
pr1 10-20-40 11-49 9.8 24.8 0.75 1.30 0.73
pr2 10-20-40 2-99 10.1 23.9 0.71 1.29 0.70
pr3 10-20-40 2-997 8.3 26.4 0.80 1.44 0.78
ext 10-10-10 1-999 5.5 979.1 10.72 21.16 10.52

Table 3: Summary of the numerical study. Each line presents the averages over 20 problem

instances of the same type.
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It is well demonstrated by the numerical results that our method is capable of obtaining

near optimal solutions for many instances of the problem. For product mixes that allow

revenue within one percent of the maximum, we need little safety stocks and buffer spaces

and we use very little WIP.

6 Discussion

In this paper we studied the problem of simultaneously selecting a product mix and

developed an asymptotically dispatching rule for a jobshop system so as to maximize the

long run revenue rate. The obtained optimal solution for the infinite case may serves

as a good practical substitution for long planning horizon, especially when its length is

unknown in advance.

For problems with large number of jobs we constructed a fluid counterpart system

by relaxing the discrete nature of the jobs and allowing each machine to divide its effort

among different operations. In large problems, the suggested technique which mimics

the operation of the fluid system, enables us to ignore the combinatorial structure of the

problem which is the essential difficulty of the problem. The obtained fluid system is sim-

pler, easier to analyze and its optimal revenue serves as an upper bound for the maximal

revenue of the discrete jobshop system. This bound is being achieved at steady state. In

order to reach this steady state, safety stocks must be built during an initialization phase.

We show that our policy creates cyclic schedules and we present some upper bounds on

the levels of the safety stocks that are independent of the cycle length. The sizes of the

safety stocks are of particular interest due to their effect on the length of the initialization

phase as well as on the average WIP after the initialization. These WIP are needed for

the system to operate smoothly, but at the same time affects the profit of the system.

The obtained cyclic schedules may consist of arbitrarily large number of jobs that are

difficult to handle and can cause high levels of safety stocks and WIP. To overcome this

obstacle, we formulate a compact Mixed Integer Program that allows us to reduce the

cycle length by slightly compromising on the optimality of the product mix. This gives

asymptotically δ-approximation method for the revenue problem with shorter cycles.

As demonstrated by our numerical study for the linear revenue function case, by giving

up 1% of the revenue, it is possible to create a Minimal Part Set that consists of very few

products. The shorter cycles obtained by this method can be scheduled according to our

proposed Fluid Based Dispatching Rule or by any other method in order to reduce the

required safety stocks and WIP.

Our results applicable mainly for situations where the product mix should remain

fixed over long period. However, an interesting implication of Proposition 3.9 is useful
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particulary for a make-to-order production mode. Consider a firm that process batches

of orders one at a time. Once the processing of a batch is finished a new batch that

includes all the orders that were collected since the beginning of the previous batch is

started. Let us denote the total number of products of type r in a given batch by nr and

let Cmax = maxi∈M

∑
(r,o)∈σi

nrTr,o be the congestion on a bottleneck machine. Clearly

Cmax is a lower bound on the time required to process the batch. Now, if the system

starts with safety stocks of Br,o(0) = dγr,o−1e it is possible to process the batch according

to FBDR, with xr = nr/Cmax. The required number of products nr will be output from

the system after Cmax units of time and the stocks at the system’s buffers will return to

their initial level by this time. That is, Br,o(Cmax) = Br,o(0) = dγr,o−1e. Hence, at time

Cmax a new batch, of arbitrary composition, can be launched, and so on and so forth.

Operating the system in such a mode is likely to be efficient, because the bottleneck

machines with respect to the current batch are kept busy uninterruptedly. This operation

mode is made possible by Proposition 3.9 provide an upper bound for the required safety

stocks independent of the composition of the batch (product mix). However, this efficiency

is obtained at the cost of building and maintaining possibly large safety stocks.

We note that our method is applicable to reentrant jobshop that are common in the

semiconductors and PCB industries. It can be easily extended to flex-shop, a general-

ization of jobshop in which each product can be produced using some different routes.

For this case, we simply represent each route as a distinct product, solve Linear Program

2.1 and proceed as usual. It may be also possible to extend our method to different

production regimes such as, assembly lines, multistage shops and others.
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A Appendix - Upper Bound on the Lateness

In this Appendix we provide a proof for proposition 3.7. Our proof is based on demon-

strating a stronger bound. This bound is not presented in the main part of the article

because of simplicity reasons, mainly those of notations.

We start with a few definitions. Consider a given operation (r, o) carried out by

machine σ(r, o). Let σfast(r,o) denote the set of all operations carried out by this machine
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with a production rate of at least xr, and by σslow(r,o) the complement set of operations.

That is, σfast(r,o) ≡ {(l, u) ∈ σ(r, o) : xl ≥ xr} and σslow(r,o) ≡ σ(r, o) \ σfast(r,o). Recall

that σfast(r,o)− ≡ σfast(r,o) \ {(r, o)}.

Proposition A.1 Assume a system operates under FBDR while allowing buffer levels to

go negative. Then, at any given time t, the lateness is bounded above by

Lr,o(t) ≤
∑

(l,u)∈σfast(r,o)−
[
Tl,u − (xl − xr)T

2
l,u

]
+
∑

(l,u)∈σslow(r,o)(Tl,u − xlT
2
l,u)∑

(l,u)∈σfast(r,o) Tl,u

+ xrTr,o.

The proof of the above proposition follows from the following lemma.

Lemma A.2 Consider a jobshop scheduled according to FBDR. Assume a pair of oper-

ation types (l, u) and (r, o), both processed on the same machine, with xl ≥ xr. Then, at

any time t, Ll,u(t) ≥ Lr,o(t)− 1 + (xl − xr)Tl,u.

Proof. Let us define the function

∆L(t) := Ll,u(t)− Lr,o(t).

Then,

∆L(t) = t(xl − xr)−Dl,u(t) + Dr,o(t).

Since xl − xr ≥ 0, ∆L(t) increases everywhere, except at those points of time when

operation (l, u) is completed. Hence, local minimum points can be found only at these

times. Assume t0 is such a time and so at time t0 − Tl,u the processing of the operation

started. Since the operations are scheduled according to FBDR, ∆L(t0 − Tl,u) ≥ 0. This

is because otherwise, operation (l, u) would have not been dispatched at that time since

there is at least one operation, operation (r, o), of a greater lateness. Thus,

∆L(t0) = ∆L(t0 − Tl,u)− 1 + (xl − xr)Tl,u ≥ −1 + (xl − xr)Tl,u,

and we are done. �

Proof for Proposition A.1: We first consider the lateness at those points of time

when machine σ(r, o) is ready. By Lemma 3.3, for any given time t,∑
(r,o)∈σi

[t · xr −Dr,o(t)]Tr,o =
∑

(r,o)∈σi

Lr,o(t)Tr,o ≤ 0.

Thus, for operation (r, o), ∑
(l,u)∈σ(r,o)−

Ll,u(t)Tl,u ≤ −Lr,o(t)Tr,o, (9)
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and (9) can be rewritten as∑
(l,u)∈σfast(r,o)−

Ll,u(t)Tl,u +
∑

(l,u)∈σslow(r,o)

Ll,u(t)Tl,u ≤ −Lr,o(t)Tr,o.

By Lemma 3.111 , Ll,u(t) ≥ xlTl,u−1 and by Lemma A.2 all the operations (l, u) ∈ σfast(r,o)

admit Ll,u(t) ≥ Lr,o(t)− 1 + (xl − xr)Tl,u. Hence,∑
(l,u)∈σfast(r,o)−

[Lr,o(t)− 1 + (xl − xr)Tl,u]Tl,u +
∑

(l,u)∈σslow(r,o)

[xlTl,u − 1]Tl,u ≤ −Lr,o(t)Tr,o,

implying that,∑
(l,u)∈σfast(r,o)

Lr,o(t) · Tl,u ≤
∑

(l,u)∈σfast(r,o)−

[
Tl,u − (xl − xr)T

2
l,u

]
+

∑
(l,u)∈σslow(r,o)

(Tl,u − xlT
2
l,u).

Thus, for any time t when machine σ(r, o) is ready, we have ,

Lr,o(t) ≤
∑

(l,u)∈σfast(r,o)−
[
Tl,u − (xl − xr)T

2
l,u

]
+
∑

(l,u)∈σslow(r,o)(Tl,u − xlT
2
l,u)∑

(l,u)∈σfast(r,o) Tl,u

. (10)

This inequality is true for any operation when a machine is ready, i.e., idle or about to

start a new operation. Clearly if the machine is idle then the lateness of all the operations

is negative and our bound is satisfied. If the machine starts a new operation at time t,

let us denote this operation by (r′, o′). Recall that by the definition of FBDR, at time t,

operation (r′, o′), maximizes the lateness over all the operations of machine Mr′,o′ . During

the processing of (r′, o′) it accumulates additional lateness of x′rTr′,o′ and hence satisfies

our bound. Now, by the first part of our proof, the rest of the operations on machine

Mr′,o′ must satisfy (10) at the next time that the machine is ready (time t + Tr′,o′) and

so, since their lateness increase throughout the interval [t, t + Tr′,o′ ] it must satisfy (10)

during this interval and our bound follows. �

Proof of Proposition 3.7. We start with the tighter bound obtained in Proposition

A.1.

Lr,o(t) ≤
∑

(l,u)∈σfast(r,o)−
[
Tl,u − (xl − xr)T

2
l,u

]
+
∑

(l,u)∈σslow(r,o)(Tl,u − xlT
2
l,u)∑

(l,u)∈σfast(r,o) Tl,u

≤

∑
(l,u)∈σ(r,o)− Tl,u∑

(l,u)∈σfast(r,o) Tl,u

≤
∑

(l,u)∈σ(r,o)− Tl,u

Tr,o

.

1Although this proposition is used to prove Proposition 3.7 there is no circularity here since our proof
of Lemma 3.11 does not rely on anything derived from Proposition 3.7.
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The inequalities above follow directly from the definitions of the sets σ(r, o)−,σfast(r,o),

σslow(r,o), σfast(r,o)− , and σslow(r,o)− . �

We note that the weaker bound of proposition 3.7 demonstrates the fact that the

lateness (and thus the required safety stocks and WIP) can be bounded by a finite number

that is independent of the particular optimal product mix obtained.

B Appendix - List of Notations

dae the smallest integer that is not smaller than a

bac the greatest integer that is not greater than a

Br,o(t) number of jobs that already completed operation (r, o− 1) at time t

but are yet to start operation (r, o)

B+
r,o(t) number of jobs that already completed operation (r, o− 1) at time t

but are yet to complete operation (r, o)

Dr,o(t) number of jobs that by time t already completed operation (r, o− 1)

but are yet to start operation (r, o)

jr number of products of type r per cycle in a cyclic schedule

Kr number of operations in route r

Lr,o(t) t · xr −Dr,o(t), the lateness of operation (r, o) at time t

M set of machines

Mr,o the machine that processes operation (r, o)

(r, o) oth operations of product type r

R set of product types (routes)

Tr,o processing time of operation (r, o)

xr (x∗r) the processing rate of all the operations in route r according to some

(optimal) solution of the fluid problem

γr,o an upper bound on the lateness of operation (r, o)

σi set of operations carried out by machine i

σ(r, o) set of all operations carried out on the same machine as operation (r, o)

σ(r, o)− all operations σ(r, o) excluding (r, o) itself

σfast(r,o) all operations σ(r, o) with their production rate at least that of the

production rate of (r, o)

σfast(r,o)− same as σfast(r,o) excluding operation (r, o)

σslow(r,o) all the operations σ(r, o) with production rate smaller than the

production rate of (r, o)
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