

Service-Oriented Line Planning and

Timetabling for Passenger Trains

Mor Kaspi and Tal Raviv

"Researchers in mathematical optimization should grasp the currently available

momentum and opportunities in the railway industry by not focusing too much on theoretical

results, but by going for real-world applications of their models and techniques. The latter

will lead to a win-win situation, both for the researchers and for the railway industry"

 Caprara et al. (2006)

Abstract

An integrated line planning and timetabling model is formulated with the

objective of minimizing both user inconvenience and operational costs. User

inconvenience is modeled as the total time passengers spend in a railway system,

including waiting at origin and transfer stations. The model is solved using a Cross-

Entropy metaheuristic. The line plan and timetable of Israel Railways is used as a

benchmark. Using the same amount of resources, the average journey time of

passengers is reduced by 20%.

Keywords: railway, line planning, timetabling, cross-entropy metaheuristic

1. Introduction

Railway operations’ planning has been practiced for almost two centuries. Over the

years, this task has become increasingly complex as railway systems develop. In the

last few decades, railway planners have been using decision support systems and

optimization methods in order to improve the quality of their plans and to save effort.

The planning process consists of several phases; the fundamental ones are line

planning, timetabling, rolling stock circulation, platforming and crew scheduling.

Traditionally, the planning process is done hierarchically such that the outcome of

one phase serves as an input for the following. For surveys on various railway

planning optimization problems, see Bussieck et al. (1997), Cordeau et al. (1998),

Caprara et al. (2006), Törnquist (2006) and Cacchiani and Toth (2011).

This paper considers the planning of both the lines and the timetable in a

regional or metropolitan train system with the goal of minimizing operational costs

2

and user inconvenience. Operational costs are modeled as the total engine time, and

user inconvenience is modeled as the total passenger journey time. Journey time

includes both the riding times and the waiting times at origin and transfer stations.

The line planning problem is defined as follows: Given railway infrastructure,

the traveling time over each of its segments and the passenger demands for journeys

determine which set of lines is used and their frequencies of use. The objective

function is typically either cost-oriented or service-oriented. Operational costs are

modeled as a function of the lines and their frequencies, and in some cases, with

respect to the type and capacity of the train, see Claessens et al. (1998) and Goossens

et al. (2004). User inconvenience is modeled by the number of nondirect passengers,

Bussieck et al. (1996), the riding time, Borndörfer et al. (2007), or the riding time

with additional penalty for transfers, Schöbel and Scholl (2006). For a recent survey

on line planning, see Schöbel (2011).

Bussieck et al. (1996) and Schöbel (2011) argue that user inconvenience

should be measured by the total time passengers spend in the railway system, i.e.,

journey time. However, because a timetable is required for the calculation of the

journey time, this cannot be done during the line planning phase.

The Line Planning Problem can be formulated as a Mixed Integer Linear

Program (MILP) and solved using methods such as branch and bound, see Bussieck

et al. (1996) and Claessens et al. (1998), branch and cut, see Goossens et al. (2004),

and column generation, see Schöbel and Scholl (2006) and Borndörfer et al. (2007).

The train timetabling problem is defined as follows: For a given set of lines

and frequencies, determine the arrival and departure time at each block (track section)

and station such that a set of safety constraints is satisfied. In regional systems, the

rail infrastructure is a limited resource on which several lines compete. Consequently,

the safety constraints are more complicated in comparison to other transportation

systems in which either each line has a separate rail (such as underground systems) or

the infrastructure is not binding at all (such as bus systems).

A common practice in timetabling of regional rail systems is to schedule the

trains in a cyclic manner. In such timetables, each event is repeated every cycle, e.g.,

every hour. This approach is preferred by both passengers and planners. For the

planners, cyclic timetables are easier to design because it is sufficient to plan a single

3

cycle. Serafini and Ukovich (1989) propose a general mathematical framework for

scheduling periodic activities: the Periodic Event Scheduling Problem (PESP). Many

of the studies on railway cyclic timetabling have adopted the PESP paradigm. See for

example Odijk (1996), Lindner (2000), Liebchen and Möhring (2002) and Liebchen

and Möhring (2007).

Liebchen and Möhring (2007) note that the routing of passenger flows is

beyond the scope of the PESP. Because the problem studied in this paper includes

routing of passengers, a new cyclic timetable construction heuristic is devised.

Operational costs and user inconvenience are largely affected by decisions

made both in the line planning phase and the timetabling phase. Hence,

simultaneously solving the two problems may be beneficial. Several previous studies

have integrated some aspects of the two phases. Ceder and Israeli (1992) and

Michaelis and Schöbel (2009) deal with bus systems in which the infrastructure is not

binding; therefore, once the lines and their frequencies are determined, a feasible

timetable can be derived directly. In Gorman (1998) and Borndörfer et al. (2007), the

line planning model is supplemented with congestion constraints for each track

section. While this approach may be enough to assure a feasible timetable for freight

trains or a tram system, this approach is not suitable for regional railway systems.

Lindner (2000) presents an integrated model that combines cost-oriented line

planning and timetabling. His proposed solution method is to decompose the problem

back to its two subproblems.

Evaluation of the service level provided by line plans and timetables requires

the routing of passenger flows. Most of the line planning literature makes simplifying

assumptions about the behavior of passengers. Many assume that the routing of a

passenger over the network links is predetermined and not affected by the line plan.

One example is the system split approach used by Bouma and Oltrogge (1994). The

use of predetermined passenger paths is also customary in timetabling; see for

example Wong et al. (2008). Some recent studies have included routing of passengers

within the line planning model, see Schöbel and Scholl (2006), Borndörfer et al.

(2007) and Schmidt and Schöbel (2010). However, minimization of the total journey

time is not considered as a goal in these studies.

4

Some studies deal with the problem of finding an optimal itinerary given an

origin, a destination, a timetable, and a set of criteria. The resulting itinerary is

provided as a service to the passengers. See Müller-Hannemann et al. (2007) for a

survey on this topic. Kinder (2008) uses this approach to improve a given timetables.

However, because the line plan is predetermined in his study, the effect on the total

journey time of passengers is limited.

No previous study on railway planning has integrated line planning,

timetabling and routing decisions of the passengers. The contribution of this study is

in presenting (a) a model that combines these three problems and (b) an algorithm to

solve it.

The rest of the paper is organized as follows: In Section 2, the service-

oriented line planning and timetabling problem is defined. In Section 3, some

properties of the optimal solution of this problem are derived. These properties are

used by the solution method presented in Section 4. The results of a numerical study

that is based on actual data from the Israeli railway system are reported in Section 5.

In Section 6, some possible extensions of the problem are discussed. Finally, a

conclusion is given in Section 7.

2. Problem Definition

The service-oriented line planning and timetabling problem (SOLPTP) is defined as

follows: Given a pool of routes, passenger demand for journeys, cycle time (),

horizon time (), and safety and operational restrictions, find a line plan and a cyclic

timetable that together minimize the total cost associated with both the travel time of

all passengers and the operation of all trains.

2.1. Input

The railway infrastructure is divided into atomic units called blocks and stations. A

block represents a regular track section and is characterized by a minimal traversing

time. A station is a location that consists of several parallel and intersecting track

sections where trains can overtake or cross each other. It is called a passenger station

if passengers can embark or disembark there and an operational station if it is

destined solely to allow overtaking and crossing.

5

A sequence of blocks and stations between two major stations that may be

traversed by a train is called a route. We note that the term line used in the railway

planning literature is more general than route. While line defines a sequence of

segments to be traversed by a train, a route is specifically defined in terms of blocks.

Each route has a numerical value referred to as a priority. When two trains compete

for the same resource, the one that travels on a route with a higher priority value is

given the right of way. The set of all possible routes to choose from is referred as the

route pool. Note that the physical structure of the railway network is not given

explicitly as an input, but it may be derived from the route pool.

The passenger demand for journeys is given in the form of origin-destination

(O-D) matrices, with one matrix for each period of the planning horizon. The

element of the O-D matrix is the number of passengers that wish to travel from

station to station starting at period . A period is an interval during the planning

horizon (e.g., one or ten minutes).

2.2. Output

A scheduled train is defined by a route, a set of stopping stations, and consistent

entrance and exit times at each block and station along the route with respect to a

given scheduling cycle (typically one hour). A solution of the problem is defined by a

list of scheduled trains.

 The cyclic timetable is constructed by repeating all scheduled trains along the

planning horizon. Note that there may be more than one scheduled train that

corresponds to a certain route. The number of scheduled trains per route constitutes

its frequency.

We note that previous railway line planning literature studied problems of

selecting a subset of routes out of a predefined set, commonly referred in the

literature as line pool. Each member of this set already defines the route and the

stopping stations. However, in the model presented in this study, all possible

combinations of stopping stations for each member of the route pool are considered.

2.3. Safety and Operational Constraints

A solution is feasible if it satisfies the following constraints:

6

Block seizing - in order to prevent a collision, only one train at a time is allowed at

each block.

Block headway () - for trains traveling in opposite directions on block , some

extra time is required between the exit time of one train from the block and the

entrance time of the next, so that the train has enough time to safely switch blocks.

Station headway () – defines the extra occupancy time of stations by trains that

dwell there. This time is added to the actual time the train is scheduled to dwell at the

station in order to enhance the safety and robustness of the timetable.

Block utilization () - defines the fraction of time that block can be seized in a

cycle. The utilization restriction enhances the robustness of the planned timetable.

Station capacity () – defines the maximum number of trains that can dwell at

station at the same time.

Minimal dwelling time (– minimal stopping time at station required to allow

embarking and disembarking of passengers.

Minimal transfer time () - the minimal time required for a passenger to switch

trains at station .

2.4. Objective Function

The objective function consists of two components, namely, the operational cost and

the user inconvenience. The operational cost is proportional to total engine time and

the user inconvenience cost is proportional to the passengers’ total travel time. The

engine time of a train is the time between the departure time from its origin station

and the arrival time at its final destination. The journey time of a passenger is defined

as the time between arriving at the origin and arriving at the destination assuming that

the passenger selects the itinerary that minimizes this time.

The goal is to minimize a weighted sum of the total engine time and the total

journey time. Given a timetable, it is easy to compute the total engine time of the

trains. However, in order to determine the total journey time, each passenger’s flow,

 , has to be assigned to its optimal itinerary. Note that a feasible itinerary must

comply with the scheduled trains and with the minimal transfer time. Let us denote

the journey time of a passenger who arrives in station at time and wishes to travel

to station by . The total journey time is given by

7

∑ ∑

)1)

An alternative approach is to formulate the model with bi-criteria objective

namely the total engine time and the total journey time. The decision maker can then

be provided with the entire efficiency frontier.

2.5. Modeling Assumption

Further assumptions in this model are as follows:

1. The total demand for journeys is unaffected by the offered service, i.e., the line

plan and timetable. However, the actual demand for each train is affected by the

individual itinerary decisions.

2. The arrival times of the passengers at their origin station is unaffected by the

actual timetable. Passengers are assumed to arrive at the station continuously

throughout the day, at inhomogeneous rates. This assumption is reasonable for

regional systems where the frequency of trains is relatively high.

3. The capacity of the trains is not binding. This assumption is very common in the

timetabling literature. In Section 6, we discuss how this assumption can be

relaxed.

4. All the trains are identical in their maximal speed, although the traveling speed

may vary from block to block.

3. Properties of Optimal Solutions

In this section, it is proven that under some reasonable conditions, trains should

always be scheduled to travel at their maximal speed. This property is useful in the

design of the insertion algorithm presented in the next section.

A set of several consecutive blocks that are not separated by stations are

referred to as a sequence of blocks. Consider a sequence of two blocks, ,

that can be traversed by a train in five and ten minutes, respectively. Suppose that

train X traverses the sequence at its maximal speed, starting at t=0. Consider a train Y

that wishes to enter at t=5 minutes. Either the train should be delayed at a station

before block for an additional five minutes (see Figure 1.a) or its speed on

8

should be reduced (see Figure 1.b). A combination of slowing down the train on

and delaying it before may also be used.

Figure 1: Synchronization of two trains on a sequence of blocks

The above example demonstrates one aspect of the diversity of the set of

feasible timetables. The goal here is to reduce the set of timetables that are being

considered without losing too much in terms of optimality. Consider the two

following mild assumptions:

Assumption 1: The capacity of the stations is not binding.

Assumption 2: All the railway intersections and interchanges occur at stations (either

passenger or operational stations).

These assumptions may be violated in some railway systems, but such

violations are rare and affect only a few trains. In particular, Assumption 2 is always

valid for scheduling trains in a corridor. Under these two assumptions, it is shown

that there exists an optimal solution for the SOLPTP where all the trains run at their

maximum speed. To prove this claim, the following lemma is first proved.

Lemma 1: Under the assumptions above, any feasible timetable can be modified to a

new feasible timetable such that

1. All trains run at their maximal speeds.

2. The entrance time to each sequence of blocks in the modified timetable is not

earlier than the entrance time in the original timetable, and the exit time is no

later.

3. The set of scheduled trains remains unchanged.

9

Proof: First note that by Assumption 2, trains traveling in opposite directions cannot

simultaneously seize blocks in a sequence. In addition, trains that travel in the same

direction cannot overtake each other within the sequence. Consequently, each block

in the sequence is traversed by the same set of trains and in the same order.

In the original timetable, the entrance time of train to the block in the

sequence is denoted by , and the traveling time on it is denoted by . Recall that

in a feasible timetable, . By convention, in a sequence of blocks,

 is the exit time from the last block in the sequence.

Let denote the minimal traveling time on block , assuming that the trains

travel at their maximum speed. Let be the block that maximizes , i.e., is the

longest block in the sequence.

A new timetable with entrance times denoted by
 is constructed as follows

)2)

 ∑

)3)

 ∑

)4)

The entrance time to each block is shifted forward and the entrance time to

each block is shifted backward such that the train travels at the maximum

speed and the entrance time to block is left unchanged. In this new timetable,

each block is traversed in time units.

In the original timetable, the time difference between any pair of consecutive

trains on block satisfies . Therefore, in the new

timetable, the time difference between any consecutive trains on any block is at least

 , i.e., there are no conflicts between pairs of consecutive trains.

Next, note that by Assumption 1, changing the departure and arrival times at

the stations cannot cause any conflict at a station. Finally, because it

follows that
 and

 , and in

particular,
 and

 . As a consequence, the entrance time of each

train to the sequence in the new timetable is not earlier than its entrance in the

10

original timetable, and the exit time of each train from the sequence in the new

timetable is not later. Q.E.D

Figure 2: Rescheduling trains in a sequence of blocks to facilitate travel at the

maximal speed

 In Figure 2, the rescheduling procedure used by the proof of Lemma 1 is

demonstrated. The example consists of a sequence of four blocks () and

three trains (). The longest block is , with a minimal traversal time of

eight minutes. An arbitrary feasible schedule is presented in Figure 2(a). In Figure

2(b), we present a new schedule for the same trains that is constructed as follow: The

traversal times of all trains on all blocks are changed to the minimal traversal times.

The exit times from are kept unchanged, while the entrance times of

are shifted forward and the exit times from are shifted backward. While the travel

times on the sequence of the three trains in the original timetable (a) are 20, 27 and 25

minutes, respectively, the travel time in the revised timetable (b) is 20 minutes for all

trains.

Note that the claim of Lemma 1 is similar to the claim that in a no-wait flow-

shop model with identical jobs, solutions where the prolonging of operations is not

used are dominant. See for example Abadi et al. (2000). Next, this observation is used

to prove that under the assumptions above, traveling at the maximum speed is

dominant with respect to the objective of minimizing the total journey time.

11

Proposition 1: There exists an optimal solution, with respect to the objective

functions of minimizing total journey time of all passengers and total engine time,

where all trains travel at their maximum speed on all blocks.

Proof: By Lemma 1, it is always possible to modify any solution such that all blocks

are traversed at the maximum speed by moving the departure time from all stations

forward and moving the arrival time at all stations backward. Consider two stations

and connected by a sequence of blocks that is traversed by a scheduled train.

Denote the original (resp., modified) departure time from by (resp.,
) and the

arrival time at by (resp.,
).

Consider the effect of the timetable modification on three groups of passengers:

1. Passengers that boarded the train at A

2. Passengers that disembarked the train at B

3. All other passenger in the system

Some members of the first group are better off. Because the departure time from A is

postponed, some passengers have the opportunity to catch earlier trains. Members of

the second group are clearly better off because their journey time is shorter. Finally,

all other passengers, including those that are on board trains that travel from A to B

are indifferent.

The total engine time of all trains can only be reduced. This is because the

departure time from the first station and the arrival time to the last station may be

shifted forward and backward, respectively.

Q.E.D

4. Algorithm

The complexity of the SOLPTP calls for a heuristic approach. The solution method

presented in this paper is based on the paradigm of the cross-entropy (CE)

metaheuristic, introduced by Rubinstein (1999). CE is an evolutionary metaheuristic

that iteratively applies the following two phases:

1. Generation and evaluation of a sample of random solutions according to a

specified random mechanism.

2. Updating the parameters of the random mechanism on the basis of these

solutions in order to produce a "better" sample in the next iteration.

12

For additional references on CE for combinatorial optimization problems, see

Rubinstein and Kroese (2004). CE has been applied to various problems, e.g., vehicle

routing problems, Chepuri and Homem-de Mello (2005), and stochastic project

scheduling problems, Bendavid and Golany (2009).

In Figure 3, an outline of the CE heuristic for SOLPTP is presented. A set of

coded solutions are generated by an initial arbitrary random mechanism. These

solutions are decoded into line planes and cyclic timetables and are then evaluated.

The random mechanism is updated based on the values of these solutions, and the

process is repeated until some stopping criteria are met.

Figure 3: Outline of the CE algorithm

The rest of the section is organized as follows: a method for encoding

solutions is presented in subsection 4.1. In subsection 4.2, procedures to construct and

evaluate solutions are introduced. The updating procedure of the random mechanism

is described in subsection 4.3.

4.1. Solution Encoding

A solution is encoded by a set of genes referred to as a chromosome. Each gene

represents a possible train and corresponds to a route in the route pool. The number of

genes related to any given route is predetermined by the planner and is bounded by

the maximal frequency of the route. A gene contains the following information:

 In Use () – A Boolean that indicates whether or not this train is being used in

this solution.

 Gate Time () – An integer that indicates the earliest time (in minutes) in which

the train can enter its first block.

 Stopping Stations () – Boolean vector with an element for each station along

the train’s route. A value of 1 in the j
th

 element of this vector indicates that the

13

train stops at its j
th

 station. Otherwise, the train may pass the j
th

 station without

stopping there.

 Figure 4: A gene Figure 5: A part of a chromosome

 Figure 4 and Figure 5 demonstrate the structures of a gene and

a set of genes that represent a part of a chromosome. The structure of all the

chromosomes of a given system is identical. The relationship between genes and

routes is stored separately and once for all the chromosomes.

4.2. Solution Evaluation

The evaluation of a chromosome consists of four stages. First, a feasible solution is

constructed, i.e., a line plan and a cyclic timetable. Second, a graph representation of

all feasible passenger itineraries is constructed. Third, the shortest path from each

node in this graph to each station is calculated in order to obtain the optimal

itineraries for each flow of passengers. Finally, the total journey time of all

passengers and the total engine time are calculated. The entire process is outlined in

Figure 6. The stages of this process are described in the rest of this subsection, as

depicted in the figure.

14

Figure 6: Outline of the solution evaluation process

4.2.1. Construction Algorithm

A solution is constructed based on a chromosome in two stages. First a line plan and

a single feasible cycle of the timetable are constructed, and then the cycle is

replicated over the entire planning horizon (e.g., a day).

A greedy insertion algorithm is used to construct a line plan and a feasible

cycle of the timetable. Recall that the length of a cycle is denoted by , and it is

typically 60 minutes. The algorithm attempts to schedule possible trains with true “in

use” indicators () one-by-one in an increasing priority order (ties are broken

by instance number of the train within the route and then by route number). It is

possible to incorporate the priority parameter as a decision variable into the CE

search mechanism.

A train is inserted into the blocks and stations according to the order

prescribed by its route. The gate time for the first block is retrieved from a gene (

value). The gate time for the next block is the exit time from the previous ones, plus

possibly, the minimal dwelling time () at the station that follows it. A train is

scheduled only if it can be inserted into all its blocks and stations.

For each block, the algorithm keeps track of the time slots within a cycle that

have been seized by previously scheduled trains. In order to insert a train into a block,

the algorithm searches for the earliest interval that has a length no shorter than the

minimum traversal time of the block that is not seized. If other trains are scheduled to

15

run in the opposite direction on the block, a headway time of is enforced. The

train cannot be inserted if such an interval does not exist or if the insertion causes a

violation of the utilization constraint (.

For a sequence of blocks, the exit and entrance times of each pair of

consecutive blocks have to be equal. If the entering time to a block is later than the

exit time from the preceding block, the algorithm tries to extend the seizing time on

the previous block. If this extension is not possible, the train cannot be inserted into

the sequence of blocks. If an insertion to the sequence is possible, the algorithm

modifies the seizing times, as explained in the proof of Lemma 1, so that the

sequence is traversed in minimal time.

The algorithm keeps track of the occupancy of each station at any period in

the cycle. Recall that the cycle is divided into short periods, typically of one minute

each. A station is seized by a train starting at its entrance time and until periods

after its departure to the next block. The algorithm does not choose the platforms for

the trains in each station. However, the station capacity is respected . Hence, the

resulted platforming problem is likely to be solvable.

The output of the insertion algorithm is a line plan and a feasible cycle. Note

that the route frequencies are implied by the number of scheduled trains per route. In

addition, the insertion algorithm determines the stopping stations of each train. Both

of these are elements of the line planning problem. A formal description of the

insertion algorithm is given in Table 1.

Replication of a cycle over the planning horizon is straightforward. We note,

however, that because the traveling time of a train may expand over several cycle

periods, incomplete trains should be removed at the end of the planning horizon.

16

4.2.2. Itineraries Graph Construction

In order to evaluate the total journey time of all passengers given a timetable, we

create a graphical representation of all possible itineraries. The itineraries graph is a

directed graph consisting of a node for each event in the timetable. A node is

characterized by station, train, type (arrival/departure), and time.

Each arrival node is connected by an arc to the following nodes:

 The next arrival node of the same train (in the next station).

 The earliest departure node from the same station at a time that is at least

later than the node's time

Each departure node is connected by an arc to the following nodes:

 The next arrival node of the same train (in the next station)

 The next departure node in the same station

Create a list of all genes having 𝐼𝑈 sorted by their route priorities

For all genes g in the list

Set t to 𝑔.𝐺𝑇;

Let block_list be the list of all blocks of the route of g sorted by the travel direction of the route

For each block b in the block_list

Find the earliest interval of time periods in the cycle that start not earlier than 𝑡 in which the g can be inserted

 If unable to insert, then

break; (this train cannot be scheduled)

 If current block follows a station, then

Find the time periods in which the train dwells at the station;

Increase occupancy of the station at these periods and the following 𝐻𝑠 periods;

If Station Capacity is violated, then

Break; (this train cannot be scheduled)

Else

If exit time from previous block is not equal to enter time to current block

 If it is possible to extend train’s seizing of the previous block, then

Extend the train's seizing of the previous block;

Else,

Break; (this train cannot be scheduled)

If this block is followed by a station, then

Try to shorten and shift all previous block seizing forward in the sequence;

Set t to the exit time from current block

If this block is followed by a station j with 𝑆𝑆𝑗 , then

Set Time to (t+ 𝑊𝑠) modulo C

If Station Capacity is violated, then (handle last station of the route)

break; (this train cannot be scheduled)

Table 1: Insertion Algorithm – constructing a cycle of the timetable based on a

chromosome

17

The length of each arc is the time difference between its end nodes. Each path

on the itineraries graph represents a feasible itinerary, and the length of the path

represents its travel duration, including transfer times. The structure of this graph

allows itineraries with transfers subject to the minimal transfer time limitations at the

various stations.

A sample timetable and its corresponding itineraries graph are given in

Figure 7. The timetable (Figure 7.a) consists of tree trains, train T15 traveling from

station A to station C and trains T17 and T21 traveling from station C to station D. In

the corresponding itineraries graph (Figure 7.b), arrival and departure nodes are

colored in grey and black, respectively. A passenger that enters the system at station

C before 09:11 will be able to board train T17 or wait for a following train at station

C. Hence, the departure node of train T17 at station C is connected to the arrival node

at station D and to the following departure node at station C. A passenger that arrives

on train T15 at station C and wishes to continue to station D will not be able to board

train T17 because of the transfer time limitation. Hence, the arrival node of train T15

to station C is connected to the departure node of train T21, the first departure node

that is at least the minimal transfer time later.

Figure 7: Sample timetable and a corresponding itineraries graph

Müller-Hannemann et al. (2007) introduce a similar but more general graphic

representation of itineraries with transfers referred to as the realistic time-expanded

18

graph. However, their representation requires approximately twice the number of

nodes and arcs. Note that because the itineraries graph is created numerous times in

the course of the CE algorithm, a more compact representation is beneficial.

4.2.3. Reachability Algorithm

To evaluate a solution, the journey time function of each demand flow

needs to be calculated. The structure of the itineraries graph assures that any path of

the graph is a feasible itinerary. Calculating is equivalent to finding the

shortest path from the departure node in the origin station following the passenger’s

arrival to a node in the destination station. There are known algorithms for all-pairs

shortest paths, such as the Floyd Warshall algorithm with complexity of and

Johnson's algorithm with complexity of , where N is the number

of nodes and A is number of arcs. See for example Cormen et al. (2001).

However, two special properties of the itineraries graph can be exploited in

order to devise a more efficient algorithm for finding the optimal itineraries of all

passengers. First, the graph has a special structure; it is a directed acyclic with a

maximal out degree of two. Second, although for each departure node, there might be

several paths to arrival nodes at each station, only the earliest arrival node is of

interest.

The reachability time is referred to as the earliest time that a station can be

reached from a given node. A vector that stores the reachability times to all stations is

defined for each node. The reachability algorithm is based on the fact that the

reachability time from a node is the minimum between the reachability times of the

two nodes that it is connected to. In order to calculate the reachability times, the

algorithm advances through the nodes in a nonincreasing order of their time. In Table

2 below, a dynamic programming formulation of the reachability algorithm is

presented.

The reachability algorithm has two main steps:

 Sorting the nodes of the itineraries graph in a nonincreasing order of time. The

complexity of this operation is , where N is the number of nodes.

 Calculating the reachability times for each node. The complexity of this phase

is , where K is the number of passenger stations in the system.

19

Typically, , so the complexity of the algorithm is determined by

the second step. In this case, the complexity of the algorithm is , which is

linear in the output size. In the unlikely situation where , the complexity of

the algorithm is . In an ad hoc implementation of the algorithm, instances

with some 10,000 events (nodes) and 47 stations could be solved in less than 0.07

seconds on a modest desktop computer.

Table 2: Dynamic programming formulation of the reachability algorithm

 - Earliest time from node n to station s

 - Node’s time

 - Node’s station

 - Following node in station

 - Following node of the same train

 { }

Proceed in nonincreasing

If , then

If is undefined, then

If is undefined, then

While the itineraries graph and reachability algorithm were devised for the

optimization algorithm introduced in this paper, they can also serve as components of

a decision support system (DSS) in which a timetable is constructed manually. In

addition, these are a more efficient alternative to solving the earliest arrival problem

presented by Müller-Hannemann et al. (2007) in the context of supporting

passengers’ personal itinerary decisions.

4.2.4. Calculation of the objective function value

The values of the two components of the objective function are calculated in the

following manner: The engine time of a train is the time difference between its latest

and earliest events. We obtain the total engine time by summing over all the trains in

the timetable. To calculate the journey times of all passengers, the journey time of

each passenger’s flow is calculated. Given the reachability times from each node of

the itineraries graph, the journey time of flow is calculated by the

following equation:

20

 (5)

where is the first departure node at station following the passenger's arrival. The

journey times of all the passengers is calculated by Equation)1).

 The objective function is a weighted sum of the total engine time and the total

journey time. The weights reflect the ratio between the cost of an engine hour and the

cost of a “passenger hour” as viewed by the planner.

4.3. Updating the Random Mechanism

Recall that each solution is represented by a chromosome that is built of a set of

genes. Each gene consists of Boolean variables (and) and an integer variable

(). For each of these variables, a probability function is created. The Boolean

variables are sampled from a Bernoulli distribution, and the integer variables are

sampled from a general discrete probability function.

The initial parameters of the Bernoulli distributions are set to 0.5. The

distributions of are initially set to be Uniform over the set { }. These

choices are arbitrary but do have a minor effect on the value to which the CE

algorithm converges.

Based on these distributions, a generation of chromosomes is created. The

number of such chromosomes is denoted by GS (for generation size). After

constructing feasible solutions based on a generation and evaluating them, an elite

group is selected, which is the γ lower (best) quantile of the solutions. The updating

mechanism of the distributions to be used in the following iteration of the algorithm

is defined next. For this purpose, the following notation is introduced:

 distribution parameter of of gene i at iteration t.

 the distribution parameter of of the j
th

 stop of gene i at iteration t

 the probability of selecting for the train of gene at iteration .

 value of the i
th

 gene of solution k at iteration t

 value of the j
th

 stop of the i
th

 gene of solution k at iteration t.

 value of the i
th

 gene of solution k at iteration t

The distribution parameters are updated according to the following equations:

21

∑

 (6)

∑

∑
 (7)

| |

∑
 (8)

where α is a smoothing parameter that helps to prevent premature convergence of the

algorithm. If the denominator of Equations (7) and (8) equals zero, then these

parameters are left unchanged, that is, and .

4.4. Stopping Criteria

The random mechanism is repeatedly employed to create generations of solutions,

and it is updated after each generation, as described above. The algorithm is stopped

when one of the following criteria is met:

Convergence of the distribution parameters - stop when both of the conditions

below hold:

1. For all genes (trains) , one of the following is true: (a) , (b) ,

or (c) the train was not scheduled at all in the solutions of the last generation.

2. For all genes (trains) having , the values of all the parameters

and are either greater than or smaller than .

where is a small positive number, say . .

Convergence of the objective function value - stop when there is no improvement

in the objective function value during the last iterations, where is a parameter of

the algorithm.

Time limit - stop when a predefined time limit or number of iterations is exceeded.

5. Numerical Experiments

In this section, we present the results of an extensive numerical experiment that was

conducted to verify the effectiveness of the proposed CE algorithm and to calibrate

its parameters. Because there are no previous studies on the service-oriented line

planning and timetabling problem, our results are compared with results obtained by

a team of railway planners at Israel Railways. This team worked on the same instance

and had the same goal of minimizing user inconvenience and operational costs.

22

Israel Railways is an independent government-owned corporation. The

company provides passenger and freight transportation and is responsible both for the

infrastructure and the rolling stock. Because the entire system is managed by a single

organization, a centralistic planning approach can be applied. The infrastructure

consists of approximately 1000 kilometers of rail tracks, 47 passenger stations and 30

operational and freight stations. The policy of Israel Railways is to give a clear

priority to passenger trains. The scheduling of the freight trains is done subsequently

to the scheduling of the passenger trains, and the utilization of the infrastructure by

passenger trains is taken as a hard constraint for the freight scheduling problem.

Therefore, the passenger timetabling problem is solved as if the infrastructure is only

used for passenger transportation. For more information about Israel Railways, see

http://www.rail.co.il/En/.

The complete data for this instance can be downloaded from

http://www.eng.tau.ac.il/~talraviv under “Publications”. The web page contains an

archive file with several data tables and a detailed description of their structure. In

Appendix A, a graphical description of the infrastructure is presented. The figure

shows the logical relations between the different blocks and stations.

In the experiments presented below, the algorithm was tested with the 28

routes used in the timetable of 2008. For the sake of fair comparison, the possible

benefit from additional routes was not checked, although such routes could be easily

added. The priority of the routes was set such that intercity trains were given

precedence over metropolitan ones. The maximal frequency of all the routes was set

to four. The safety and operational parameters were set to the same values used by

Israel Railways planners, as given in Table 3.

Table 3: safety and operational parameters of the case study instance

Block headway () 1 min.

Station headway () 1 min.

Block utilization () 75%

Minimal dwelling time (1 min.

Minimal transfer time () 4 min.

 The weight of the total journey time was set to one, and the weight of the total

engine time was varied across three different values: 0, 100, and 200. The first option

ignores operational costs completely and concentrates on reducing total journey time.

23

With a weight of 100, the value of each engine hour equals 100 passenger hours.

Note that while the planners wish to minimize both user inconvenience and

operational cost, they typically cannot specify the exact ratio between the weights.

 Observe that the effect of the weight ratio on the nature of the optimal

solution is very significant. When the operational cost is high, the optimal solution is

likely to include fewer trains that are in turn easier to schedule given the same

limitations. Hence, using different weight ratios results in considerably different

problem instances.

5.1. Tuning Experiment

In order to calibrate the CE algorithm parameters and to check the sensitivity of the

algorithm to its parameters, a full factorial experiment was conducted with the

following three algorithm parameters:

1. Smoothing - with two levels . and . .

2. Generation size - with two levels GS=500 and GS=1000. As recommended by

previous studies that applied the CE method, the elite size is set to be 10% of

the generation size.

3. Keep Elite (KE) –the algorithm was tested with and without keeping the elite

group for the next generation, a concept known in the evolutionary algorithm

literature as elitism.

In the insertion process, some genes having may eventually not be

scheduled. Another parameter that was considered was whether to update the

distribution parameters according to genes that have or only according to

genes that were actually scheduled during the insertion process. A few preliminary

runs showed a great difference between the two in favor of the first option. Therefore,

this parameter was omitted from the experiment. It seems that ignoring trains that

could not be scheduled may prematurely disqualify too many trains out of the

generated solutions.

The CE algorithm was implemented in C and was tested on an Intel® Xeon™

2 CPU E5506, 2.13 GHz. In order to save time, the four cores of the CPU were

exploited by launching two runs in parallel. A full factorial experiment with

four replications was carried out in order to test the effects of the three algorithm

parameters on the three instances of the problem. Six hours were allocated for each

24

run; in order to examine the convergence of the algorithm, the stopping criteria were

not activated. Summarized results of the 96 runs are given in Table 4: the settings of

the runs are given in the first four columns. The fifth and sixth columns present the

average and range of the four runs of each setting. The minimal value obtained for

each setting is given in the seventh column, the average number of trains scheduled

per hour is given in the eighth column and the average number of generations created

in six hours is given in the last column. An ANOVA analysis showed that the main

factors, and GS, had a significant but rather small effect in terms of the objective

function value. In addition, for each problem instance, the gap between the average

solution of the best and worse settings was less than 1.7%. This may suggest that the

algorithm is not extremely sensitive to changes in its parameters, which is good news.

It is apparent from the results of the experiment that no set of algorithm

parameters dominates the others for all problem instances. For , the best

settings are . , and for and , the best

settings are . . However, both of these settings

performed well in all three instances.

Table 4: Experiment results

Run Setting
Objective Function Value

(Hours/Day)

Trains

Per Cycle

Number of

Generations

Ratio GS KE Average Range Minimum Average Average

0 0.3 500 No 100,101.5 858.7 99,689.0 41.25 514.75

0 0.3 500 Yes 100,384.2 703.0 100,122.4 40.00 605.25

0 0.3 1000 No 100,033.9 1,179.0 99,292.5 38.50 285.25

0 0.3 1000 Yes 101,080.2 2,254.0 100,153.0 37.00 331.50

0 0.7 500 No 101,330.6 1,532.7 100,796.6 42.25 509.25

0 0.7 500 Yes 100,785.3 1,444.1 100,177.8 42.00 554.00

0 0.7 1000 No 100,425.6 1,803.0 99,418.3 38.75 256.25

0 0.7 1000 Yes 99,643.2 991.8 99,125.6 40.25 320.75

100 0.3 500 No 155,178.2 1,195.1 154,620.7 16.25 1,019.50

100 0.3 500 Yes 155,009.1 990.6 154,277.9 14.75 1,171.75

100 0.3 1000 No 154,182.3 659.4 153,755.0 14.75 494.50

100 0.3 1000 Yes 155,134.7 2,063.1 154,439.9 15.25 561.75

100 0.7 500 No 156,326.7 2,768.3 154,963.6 18.00 1,024.50

100 0.7 500 Yes 156,389.5 1,726.8 155,842.6 17.75 1,155.75

100 0.7 1000 No 155,082.4 1,221.2 154,471.9 15.00 503.75

100 0.7 1000 Yes 154,737.8 1,141.5 154,214.4 15.25 562.75

200 0.3 500 No 186,228.4 787.0 185,765.1 11.00 1,253.00

200 0.3 500 Yes 186,804.3 1,999.5 186,000.6 10.50 1,371.00

200 0.3 1000 No 185,562.6 1,501.7 184,930.3 10.25 595.25

200 0.3 1000 Yes 185,563.5 1,026.5 185,091.1 10.25 664.00

200 0.7 500 No 187,312.4 1,242.5 186,776.4 12.75 1,250.50

200 0.7 500 Yes 187,980.8 2,502.5 186,825.5 12.75 1,395.50

200 0.7 1000 No 185,890.2 1,006.6 185,466.1 10.50 615.50

200 0.7 1000 Yes 185,859.6 498.1 185,562.5 10.50 672.25

25

The Ratio factor had a significant, positive, large effect. Clearly, the system is

better off with smaller operational costs when the user inconvenience is kept

constant. Interestingly, the algorithm produces a greater number of solutions (and

hence generations) with larger operational costs within the allotted time. This is

because the random mechanism adjusts itself to produce solutions with fewer trains

when the costs are higher. The evaluation of such solutions is carried out more

quickly.

5.2. Running Time and Convergence of the Algorithm

In this subsection, some observations on the convergence process of the algorithm are

made, and conclusions regarding the stopping criteria are derived. For all the runs, the

best solution and completion time of each generation was recorded. Figure 8 presents

the evolution over time of the average solution values of the three instances. In the

first half hour, a sharp decrease in the solution value is noticeable for all three

instances. The solutions of the and instances did not

further improve after approximately one and a half hours and two hours, respectively.

However, for the instance, the graph is still decreasing after six hours.

Hence, it seems that the solutions could have improved slightly if more time was

allocated for this instance.

Figure 8: Convergence of the average solution per problem instance (ratio)

26

To further examine the convergence process in each setting, additional

information is presented in Table 5. The first four columns of the table display the run

settings. The first time at which the best solution of the run was obtained is presented

in the fifth column. The first time at which a solution within 1% of the best one was

encountered is presented in the sixth column. In addition, three values of the no-

improvement stopping criterion parameter were inspected, namely,

generations. The seventh column of Table 5 presents the average time in which the

 stopping criterion was triggered. The eighth column presents the average

difference between the solution when the criterion was triggered and the best solution

obtained in the same run. An (-) indicates that the corresponding stopping criterion

was not triggered. In the rest of the table, the same information is presented for

 .

It is apparent from the table that while the best solutions of the 0

and instances are found long before the time limit (21600 seconds)

expires, the best solution of the instance is found toward the end of each

run. Indeed, as we already observed, the six hours limit is quite sufficient for the

former instances but not for the later.

Table 5: Testing the Stopping Criteria

Run Setting

Initially

Encountered

(seconds)

No-improvement Stopping Criterion

15 Generations 30 Generations 50 Generations

Ratio GS KE Best

solution

1%

from

best

% from

best

Time

(seconds)

% from

best

Time

(seconds)

% from

best

Time

(seconds)

0 0.3 500 No 19,594 8,124 8.0963% 5,003 - - - -

0 0.3 500 Yes 21,331 9,513 14.3531% 1,569 - - - -

0 0.3 1000 No 21,639 17,288 - - - - - -

0 0.3 1000 Yes 21,531 18,323 11.5581% 3,870 - - - -

0 0.7 500 No 18,098 2,974 0.0920% 8,137 0.0117% 13,281 0.0046% 14,629

0 0.7 500 Yes 17,482 4,369 4.2848% 5,543 0.0357% 14,405 0.0292% 17,095

0 0.7 1000 No 19,267 7,204 2.2827% 12,826 - - - -

0 0.7 1000 Yes 21,116 14,627 10.0822% 4,504 - - - -

100 0.3 500 No 8,764 3,137 0.1339% 4,703 0.0365% 6,106 0.0089% 7,586

100 0.3 500 Yes 7,873 2,736 4.5859% 2,935 0.0957% 5,653 0.0652% 6,685

100 0.3 1000 No 10,686 6,673 7.4005% 6,208 0.0045% 11,411 0.0000% 12,785

100 0.3 1000 Yes 13,086 6,182 8.9785% 4,877 0.0750% 10,868 0.0000% 14,954

100 0.7 500 No 4,567 1,227 0.1732% 2,338 0.0351% 3,616 0.0131% 4,647

100 0.7 500 Yes 7,423 1,468 0.1863% 3,053 0.0463% 4,987 0.0463% 5,359

100 0.7 1000 No 8,282 2,845 0.2240% 5,236 0.0206% 7,910 0.0022% 9,766

100 0.7 1000 Yes 8,749 3,006 0.0273% 5,688 0.0230% 6,564 0.0099% 7,956

200 0.3 500 No 5,428 2,505 5.8040% 2,759 0.0880% 4,402 0.0092% 5,728

200 0.3 500 Yes 5,667 2,219 0.1776% 3,465 0.1104% 4,197 0.0632% 5,227

200 0.3 1000 No 8,332 5,082 0.0068% 7,869 0.0068% 8,387 0.0054% 9,450

200 0.3 1000 Yes 5,980 4,418 0.0398% 6,166 0.0000% 6,919 0.0000% 7,545

200 0.7 500 No 4,149 999 0.2324% 1,647 0.0310% 3,105 0.0310% 3,449

27

200 0.7 500 Yes 4,815 1,017 0.1365% 1,784 0.1254% 2,113 0.0246% 3,393

200 0.7 1000 No 7,531 2,129 0.1538% 3,436 0.0207% 5,944 0.0068% 6,970

200 0.7 1000 Yes 8,572 2,399 0.0246% 4,311 0.0057% 5,166 0.0057% 5,796

Using the no-improvement criterion with could save a great deal of

running time for the instances at negligible cost. This stopping

criterion was not triggered in most of the runs. Indeed, the objective

function value in these runs did not converge within the six-hour limit. However

whenever the stopping criterion was triggered, the solution obtained was equal or

very close to the best solution of the run. This implies that the no-improvement

stopping criterion is a reasonable criterion that can be used when there is no definite

time budget. Note that the no-improvement criterion with was triggered

prematurely in some of the runs, and thus, it is not recommended.

We also tested the convergence of the distribution parameter criterion with

 This criterion was rarely triggered prior to the no-improvement

criterion. However, in the few cases during which the criterion was triggered, the

obtained solution was equal or very close to the best one obtained within the six-hour

time limit. We recommend the use of the distribution parameter criterion in addition

to the no-improvement criterion if it is desirable to reduce the average running time.

While the evaluation of each solution is done by an efficient reachability

algorithm, as described in 4.2.3, it consumes the major share of the computation time.

Luckily, this part of the algorithm lends itself easily for parallelization because the

evaluation of each sampled solution can be carried out independently. Hence, it is

possible to reduce the running time proportionally to the number of processors.

5.3. Comparing CE with a Brute Force Approach

One possible criticism on the CE algorithm may be that the improvement of the

solutions stem merely from the fact that many random solutions were generated. In

order to refute this argument, the following test was performed: the initial CE

distributions were used to randomly generate as many feasible solutions as possible to

evaluate within a time limit of six hours. This is in fact equivalent to running the CE

algorithm with α=0. This test was replicated four times for each problem instance.

28

Table 6: Comparing CE with a Brute Force Approach

Ratio
Total Number

of Solutions

Brute Force Best

(Hours/Day)

Difference from

average of

all CE runs

Difference from

average of

best setting runs

0 1,851,000 122,225.4 21.65% 22.66%

100 1,846,000 187,995.8 21.09% 21.93%

200 1,840,000 242,782.8 30.25% 30.84%

In Table 6, we present a comparison of the result obtained by this approach to

average results obtained by the CE algorithm. The first column identifies the instance

by the cost ratio, the second column presents the total number of solutions in all four

runs that could be produced and evaluated within the time limit, and the value of the

best solution that was generated in all four runs is presented in the next column. The

relative difference between the brute force solution and the average solution over all

possible settings is presented in the fourth column. In the rightmost column, we

present the relative difference compared with the average solution obtained by the

best algorithmic setting of each instance. It is apparent from Table 6 that the results

obtained by the CE are significantly better than those that could be obtained by a

nonintelligent random approach.

5.4. Comparison with the Current Timetable

Next, the algorithm is benchmarked against the actual timetable being used by Israel

Railways. This timetable was designed by a team of expert planners over a period of

one year. It should be noted, however, that the actual planning task consists of

solving other subproblems, such as platforming and rolling stock circulation, which

are not treated here.

 The timetable constructed by Israel Railways has a cyclic nature but is not

entirely cyclic. The construction of this timetable was done by planning a cyclic

timetable and later "removing" some trains at slack hours. In order to make a more

accurate comparison, a fully cyclic timetable was constructed out of the published

timetable. This was done simply by reinstating the removed trains. This timetable is

referred to as the peak timetable, while the original one is referred to as the published

timetable.

29

The total journey time of passengers and the total engine time of the published

and the peak timetables were calculated as explained in 4.2.4. In order to compare the

solutions obtained by the CE algorithm with the existing timetable, the ratio between

operational costs and user inconvenience must be specified. Because this ratio is

unknown, an efficiency frontier is constructed in order to visualize the trade-off

between the two components. In order to plot an efficiency frontier, the CE algorithm

was applied iteratively for various cost ratios, namely, 0, 25, 50, 75, 100, 150, 200,

400, and 800. The algorithm was employed with the following setting (.

 , which yielded the best average among the ratio=0, 100, and 200

instances described in subsection 5.1. Each approximately optimal solution obtained

is decomposed back to its passenger and engine components. This constitutes a point

on the approximated efficiency frontier.

Figure 9 presents the approximated efficiency frontier constructed for the

Israel Railways case. The horizontal axis represents the operational cost (in terms of

engine hours), and the vertical axis represents the user inconvenience (in terms of

total journey time). Each nondominated solution obtained by the algorithm is marked

on the graph by a black circle. The published timetable is marked by a rhombus, and

the peak one, by a square.

It is apparent from Figure 9 that it is possible to reduce the user inconvenience

and the operational cost simultaneously. For example, the total journey time can be

reduced by approximately 22% at the same operational cost. This represents a yearly

saving of more than 7,650,000 passenger hours and shortens the average journey of a

passenger from 65 to 51 minutes. In addition to the direct economic benefit obtained

by saving so many working hours, there are clear indirect environmental and

economic benefits in making the train a more attractive mode of transportation.

Because of the approximation error of the CE algorithm, Pareto-dominated

solutions were obtained. These solutions are represented in Figure 9 by grey circles.

Note that these dominated solutions are much closer to the efficiency frontier as

compared with the published and peak timetables.

30

Figure 9: Approximate efficiency frontier

The Ayalon corridor is a 7 kilometer section connecting the Tel-Aviv stations;

all segments in this section consist of three rails. This corridor is considered by the

railway planners as the system's "bottleneck". For the instance, the CE

algorithm was able to schedule 32 trains per hour as compared with 20 trains in the

peak hours of the current timetable.

Currently, Israel Railways is promoting a 2 billion NIS (approx. 500 million

dollars) project for the development of a fourth rail in this corridor

(http://www.haaretz.com/hasen/spages/685191.html). It appears that higher

utilization of this corridor can be achieved without adding another rail. The algorithm

can be used to test the effect of adding another rail in the corridor or, alternatively,

the effect of increasing the capacity of some stations along the corridor.

5.5. Further Validation

In order to examine the behavior of the algorithm further, additional instances were

created by modifying the routes input. The rest of the data for these instances are as

in the original experiment. The additional instances are based on the two following

route sets:

Route Set A: Uses existing infrastructure that is currently used only for freight

transportation. In particular, several routes that bypass the Ayalon corridor were

added.

31

Route Set B: Uses the original infrastructure but with different routes. All routes that

pass through the Ayalon corridor were split into routes that begin\end at the corridor

entrances. In addition, a high-frequency shuttle running along the corridor was added.

Both route sets are potentially beneficial alternatives to the current routes because

they allow easing the capacity constraint on the Ayalon corridor bottleneck.

A convergence test was conducted as in subsection 5.2. For each of the three

tested weight ratios we used only the best algorithm settings as concluded from the

experiment in subsection 5.1. Each instance was solved four times by the CE

algorithm with a time limit of six hours per run. The average convergence results are

reported in Table 7. The first two columns of the table describe the instance in terms

of route set and cost ratio. Next, we present the difference between the average

solution obtained by the CE algorithm and a solution obtained by a naïve (brute

force) random algorithm after six hours as described in subsection 5.3. In the next

two columns we present the average time in which the best solution was encountered

by the algorithm and the time in which a solution within 1% of it was first obtained.

In the rest of the columns we present the quality of the solution and the time when the

no-improvement stopping criterion was first triggered for .

Table 7: Convergence test for the additional instances

Run Setting Brute

force

result

Initially

Encountered

(seconds)

No-improvement Stopping Criterion

15 Generations 30 Generations 50 Generations

Set Ratio % from

best

Best

solution

1%

from

best

% from

best

Time

(seconds)

% from

best

Time

(seconds)

% from

best

Time

(seconds)

A

0 21.90% 21,632 16,837 6.4850% 7,374 - - - -

100 23.43% 15,409 7,719 4.7212% 8,937 0.0390% 13,459 0.0390% 14,309

200 32.47% 12,329 5,767 0.1827% 6,938 0.1635% 7,684 0.1571% 9,144

B

0 32.72% 20,294 7,962 0.0340% 13,553 - - - -

100 23.79% 19,401 8,739 8.3003% 7,334 0.0590% 13,592 0.0199% 16,421

200 30.26% 9,975 6,702 0.0699% 8,387 0.0061% 10,364 0.0000% 11,838

It is apparent from Table 7 that the algorithm delivers solutions that are

significantly better than solutions that could be obtained by a brute force procedure.

For the instances, the algorithm converged within the six-hour time

limit. This convergence pattern is similar to the one observed in the original

experiment. The effectiveness of the no-improvement stopping criterion with

or is supported by the results of this additional experiment.

32

6. Extensions

In this section, we describe possible extensions of the problem and discuss how to

adapt the CE algorithm for them. In reality, the line planning and timetabling problem

is typically solved incrementally. Several trains are added or modified while the rest

of the system is kept unchanged. The unchanged trains constitute constraints on the

occupancy of the infrastructure. It is straightforward to implement such constraints in

the proposed framework: the insertion algorithm (see 4.2.1) is initiated with all the

blocks and stations seized by the unchanged trains. The rest of the procedure remains

the same.

 Generally, it is desirable to set the frequencies of each inbound - outbound

pair of lines to be the same. It is possible to implement this requirement by defining

all routes as round-trip ones. This assures that whenever a train is scheduled, another

one with an opposite route is also scheduled.

The demand for journeys is typically inhomogeneous throughout the planning

horizon and is usually characterized by rush hours and slack hours. Thus, it may be

possible to save on operational cost by reducing the frequency of some routes in slack

hours without a significant increase in the total journey time. The same encoding

method introduced in subsection 4.1 can be used to select some trains to be removed

in these hours. This can be accomplished by adding another Boolean variable to each

gene, representing whether the train is used in slack hours or not.

Throughout the paper, it is assumed that the capacity of trains is nonbinding

and that all the trains are identical in terms of operational costs. It is possible to

somewhat relax these assumptions by using the following model: the capacity of each

train is controlled by the planner, and it determines the train’s operational cost. To

adapt the algorithm to this model, it is necessary to find the maximum occupancy of

each train. The number of passengers on board a train at each block is calculated by

assigning each passenger to his optimal itinerary, as in 4.2.3. The operational cost of

each train is then determined by the maximum occupancy.

7. Conclusion

The calculation of the total time spent by passengers in the system is computationally

involved. Hence, optimizing a line plan and timetable according to this measure is

33

challenging. The cross-entropy algorithm presented in this paper is shown to be

effective in solving the problem. In addition, the ability of CE to tackle problems with

complicated structures allows easy extension of the problem and incorporation of

additional components of the rail planning process.

Acknowledgment: The authors are grateful to Mr. Joseph Navon, Mr. Yuri Morozov and Mr. Michael

Shachar from Israel Railways for their assistance in defining the complicate real-life planning problem

studied in this paper and for the data that they provided. The study was partly supported by the

Government Companies Authority of Israel. The authors would like to thank the anonymous referees

for their valuable comments and suggestions.

References

Abadi, I.N.K., N.G. Hall and C. Sriskandarajah. 2000. “Minimizing cycle time in a blocking

flowshop”. Operations Research, 48(1), 177-180.

Bendavid, I. and B. Golany. 2009. “Setting gates for activities in the stochastic project

scheduling problem through the cross entropy methodology”. Annals of Operations

Research, 172(1), 259-276.

Borndörfer, R., M. Grötschel, and M.E. Pfetsch. 2007. “A column generation approach to

line planning in public transport”. Transportation Science, 41(1), 123–132.

Bouma, A. and C. Oltrogge. 1994. “Linienplanung und simulation für öffentliche

verkehswege in praxis und theorie”. Eisenbahntechnische Rundschau 43(6):369–378

(in German)

Bussieck, M.R., P. Kreuzer and U.T. Zimmermann. 1996. “Optimal Lines for Railway

Systems”, European Journal of Operational Research, 96, 54–63.

Bussieck, M.R., T. Winter and U.T. Zimmermann. 1997. “Discrete optimization in public rail

transport”, Math. Program., vol 79, pp. 415–444.

Cacchiani, V. and P. Toth. 2011. “Nominal and Robust Train Timetabling Problems”,

European Journal of Operational Research, doi:10.1016/j.ejor.2011.11.003.

Caprara, A., L. Kroon, M. Monaci, M. Peeters, P. Toth. 2006. “Passenger railway

optimization.” In: Barnhart C, Laporte G (eds) Handbooks in operations research and

management science, vol 14. Elsevier, Amsterdam, 129–187.

Ceder, A. and Y. Israeli. 1992. “Scheduling considerations in designing transit routes at the

network level”. M. Desrochers, J.-M. Rousseau, eds. Proc. 5th Internat. Workshop

Comput.-Aided Scheduling Public Transport (CASPT), Montréal, Canada, 1990,

Vol. 386. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag,

Berlin, Heidelberg, Germany, 113-136.

34

Chepuri, K., and T. Homem-de Mello. 2005. “Solving the vehicle routing problem with

stochastic demands using the cross-entropy method”. Annals of Operations Research

134 (1): 153–181.

Claessens, M.T., N.M. van Dijk and P.J. Zwaneveld. 1998. “Cost optimal allocation of rail

passenger lines”, European Journal of Operational Research, 110 (3), 474-489.

Cordeau, J.F., P. Toth and D. Vigo. 1998. “A survey of optimization models for train routing

and scheduling”. Transportation Science, 32 (4), 380–404.

Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein. 2001. “Introduction to Algorithms”,

2nd ed. (MIT Press, Cambridge, MA).

Goossens, J.H.M., C.P.M. van Hoesel and L.G. Kroon. 2004. “A branch-and-cut approach for

solving railway line-planning problems”, Transportation Science 38, 379–393.

Gorman, M.F. 1998. “An application of Genetic and Tabu Searches to the Freight Railroad

Operating Plan Problem.” Annals of Operations Research, 78, 51–69.

Kinder, M. 2008. “Models for periodic timetabling”. Master’s thesis, Technische Universität

Berlin.

Liebchen, C. and R.H. Möhring. 2002. “A case study in periodic timetabling”. In Electronic

Notes in Theoretical Computer Science Vol. 66 (6), pp. 1–14.

Liebchen, C. and R.H. Möhring. 2007. “The modeling power of the periodic event

scheduling problem: railway timetables - and beyond”. In Algorithmic Methods for

Railway Optimization, number 4359 in Lecture Notes on Computer Science.

Springer, pages 3-40.

Lindner, T. 2000. “Train Schedule Optimization in Public Rail Transport”. PhD thesis,

Technische Universität Braunschweig.

Michaelis, M and A. Schöbel. 2009. “Integrating line planning, timetabling, and vehicle

scheduling: a customer oriented approach”. Public Transp 1(3):

211-232.

Müller-Hannemann, M., F. Schulz, D. Wagner, and C. Zaroliagis. 2007. “Timetable

information: Models and algorithms”. In Algorithmic Methods for Railway

Optimization, volume 4395 of LNCS, Springer, Heidelberg, pages 67-89.

Odijk, M.A. 1996. “A constraint generation algorithm for the construction of periodic

railway timetables”, Transportation Research. Part B 30 (6) 455-464.

Rubinstein, R.Y. 1999. “The Cross-Entropy Method for Combinatorial and Continuous

Optimization.” Methodology and Computing in Applied Probability 2, 127–190.

35

Rubinstein, R.Y. and D.P. Kroese. 2004. The Cross-Entropy Method: A Unified Approach to

Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning,

Springer-Verlag, New York.

Schmidt, M and A. Schöbel. 2010. “The Complexity of Integrating Routing Decisions in

Public Transportation Models”. In Proceedings of 10th Workshop on Algorithmic

Approaches for Transportation Modelling, Optimization, and Systems, ATMOS'10.

Schöbel, A. and S. Scholl. 2006. “Line planning with minimal travel time”. In 5th Workshop

on Algorithmic Methods and Models for Optimization of Railways, number 06901 in

Dagstuhl Seminar Proceedings, 2006.

Schöbel, A. 2011. “Line planning in public transportation: models and methods”. to appear in

OR Spectrum (available online).

Serafini, P. and W. Ukovich. 1989. “A mathematical model for periodic event scheduling

problems”, SIAM Journal on Discrete Mathematics 2, 550–581.

Törnquist, J. 2006. “Computer-based decision support for railway traffic scheduling and

dispatching: a review of models and algorithms”. In Proc. 5th Workshop on

Algorithmic Methods and Models for Optimization of Railways, ATMOS 2005.

Wong R.C.W, T.W.Y. Yuen, K.W. Fung, and J.M.Y. Leung. 2008. “Optimizing Timetable

Synchronization for Rail Mass Transit”, Transportation Science, 42(1), 57-69.

http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2757
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=2757

36

Appendix A – Infrastructure representation of the benchmark problem

