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Abstract 

Companies that provide service at geographically dispersed locations face the problem of 

determining the technician that will serve each location as well as setting the best route for each 

technician. Such a scenario is known as the field service routing problem. Large companies often 

outsource their field service tasks to several contractors. Each contractor may serve several 

companies. Since the contractors cannot share the information about the tasks of their other clients, 

the most common practice involves allocating the tasks to the contractors heuristically based on 

geographical considerations. In this approach, the tasks for which the contractors have already 

been committed to other companies are not considered. As a result, the allocation of new tasks can 

be inefficient. This study develops 2-stage task allocation mechanisms that cope with the problem 

and result in nearly optimal allocations. 

In the first stage, a feasible allocation of tasks to contractors is generated. We consider two 

possible allocation procedures: sequential combinatorial auctions and sequential negotiations. The 

sequential combinatorial auctions procedure implements the Generalized Vickrey auction, which 

is a strategy-proof mechanism for the allocation of multiple goods among several competing 

agents. A sequential negotiation method is suggested as an alternative task allocation mechanism. 

The method automates a multi-lateral negotiation process in which the company is the leader, and 

the contractors are followers. In the second stage, the contractors are allowed to exchange the tasks 

among themselves so as to decrease their operational costs. The exchanges may or may not include 

money transfers.  

We found that the first-stage procedures yield fairly efficient allocations and the second 

stage further improves them. The obtained allocations are considerably more efficient than the 

solutions generated by a reasonable benchmark heuristic. Moreover, the allocations' costs are close 

to a lower bound established by the optimal allocation of a central planner. That is, the price of 

decentralization is shown to be small.  

1. Introduction 

Field service organizations operate in a dynamic, ever-changing world that combines long-range 

planning with emergency responses. Both temporal and spatial aspects are pivotal in the operation 
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of field service systems. The former is important because the working hours of field service 

personnel cannot be stored and used later, and the latter is important because the locations of the 

demand points are typically spread over a large geographical area. 

The standard approach in practice and the main research direction in the literature are based 

on a centralized view. A central planner who is assumed to have access to all the relevant 

information determines the schedules and routes of all the field crews in order to optimize an 

objective function, which represents the total cost of the operation. Commercial software packages 

support this approach. 

In recent decades, many organizations have outsourced their field service operation to 

contractors. In particular, the field service of a single company is outsourced to multiple 

contractors who, in turn, may serve other companies, and their geographic coverage areas may 

overlap. In such a market configuration, planning of the field service operation of a company 

cannot be carried out centrally. Moreover, since the company has no access to the information 

about the tasks of other companies served by the contractors, it cannot allocate its service tasks 

efficiently. In practice, the allocation of service tasks to the contractors is carried out based on 

some simple arbitrary rules. A smarter coordination mechanism that results in a more efficient 

operation, profitable to both the company and the contractors, is needed. This observation is based 

on personal communications with researchers and managers in a leading software company in the 

domain of Field Service Management, Beniaminy (2013) and Kolka (2017). 

In this paper, we consider the problem of a service company that wishes to allocate service 

tasks to contractors in a manner that allows for an efficient solution of the routing problem later 

faced by the contractors. We refer to this problem as the Decentralized Field Service Routing 

Problem (DFSRP). The input of the problem consists of a set of tasks and a set of contractors. Each 

task is characterized by its location and service time. In addition, each contractor is pre-committed 

to his own set of tasks, which are not revealed to the company. Each contractor is interested in 

maximizing his revenue net of the labor and routing costs. The company, on the other hand, aims 

to minimize its payments to the contractors. However, because the business relations between the 

parties are of a long-term nature, the company also wishes to maintain the profits of the contractor 

at a reasonably high level. 

  Centralized versions of the Field Service Routing and Scheduling (FSRS) problem have 

been the prime focus of many studies carried out in the recent decades. We discuss several 

representative papers that highlight important aspects of the state of the art.    

Beniaminy et al. (2009) introduce several solution methods for the FSRS problem. First, a 

genetic algorithm, in which each gene in the chromosome is a pair (𝑅𝑖, 𝐷𝑗) implying that demand 

𝐷𝑗  is assigned to technician 𝑅𝑖, is presented. Elective chromosomes along with crossovers and 

mutations comprise the next generation of the population. Next, the authors present an Ant Colony 

Optimization (ACO) algorithm in which separate pheromone tables for each resource are created. 
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This algorithm is amendable for parallelization. Finally, a Greedy Randomized Adaptive Search 

Procedure (GRASP), modified to include pheromone tables, is suggested. The genetic algorithm 

and the ACO are found to perform well for a complex instance with 620 demands and 88 resources 

with different skills.   

Cortés et al. (2014) consider a real-life setting of the FSRS problem. The planning horizon 

is one working day. Each customer has a soft time window and a different priority related with 

that window. Scheduling a customer to be served in the next day is allowed but bares a penalty. 

The objective function is minimizing a weighted sum of travel cost, lateness cost and the penalties 

incurred by postponing the service to the next day. The authors develop a Branch-and-Price 

algorithm that utilize a constraint programming framework in the column generation phase. 

Numerical experiments are used to demonstrate the applicability of the method.  

Kovacs et al. (2012) also study a variant of the FSRS problem. The problem consists of a 

set of geographically dispersed tasks that needs to be served during a single day by a set of 

technicians. Each technician possesses certain skills. Each skill has several levels of expertise. 

Each task requires one or more skills at some level.  Each task may or may not have a related time 

window. Outsourcing of tasks at a given cost is allowed. The authors aim at finding the allocation 

of the tasks to the technicians that minimizes the total cost of routing and outsourcing. The authors 

also consider a version of the problem where, for some tasks, no single technician possess all the 

required skills. In this case, the problem also deals with grouping the technicians to appropriate 

teams. The two versions of the problem are solved by ALNS algorithms.        

Zamorano and Stolletz (2017) study a similar problem and consider a planning horizon 

with multiple periods. They aim at finding weekly schedules that minimize the total cost of routing, 

customer waiting and overtime. A weekly schedule is obtained by solving three allocation 

problems for each day of the week: (1) The daily grouping of technicians to teams (2) The 

allocation of teams to tasks (3) The creation of daily routes. Each task has a set of possible time 

windows. The authors present a mixed integer linear programming (MILP) formulation of the 

problem and two versions of a Branch-and-Price solution strategies.  

Pillac et al. (2013) solve a dynamic version of the FSRS where the service requests over 

time. The service requests are characterized by time windows, required skills, tools and spare parts. 

These requests may be rejected at a given penalty. Technicians may replenish their spare parts and 

tools at a central depot at any point of the day. The objective function is to minimize the total 

routing and penalty costs. The authors argue that the sequence by which requests are served as 

well as which requests are rejected should be determined dynamically. They present two solution 

methods for the problem based on parallel adaptive large neighborhood search (pALNS) and on a 

multiple plan approach (MPA). Numerical experiments show that the pALNS outperforms the 

MPA method considerably.   
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Souyris et al. (2013) present a robust optimization method for the FSRS with stochastic 

service times and soft time windows. The objective function is minimizing the sum of total travel 

time, total lateness time and total penalty incurred if service is postponed to a later period. The 

authors explore a version of the problem where service times are correlated and the total service 

time does not exceed some threshold. The authors present a set-partitioning model for the problem 

and its robust counterpart which they solve using a Branch and Price algorithm. This counterpart 

minimizes the cost incurred for the worst case and therefore yields robust solutions. Numerical 

experiments carried out show that the benefits from applying the robust method increase as the 

variance in service times increases and as lateness cost increases.  

Binart et al. (2016) address the multi-depot FSRS problem with stochastic service and 

travel times. Two types of customers, i.e. mandatory and optional, are present. Mandatory 

customers have to be served at given time windows while optional customers may or may not be 

served at any time of the working day. The objective function is maximizing the number of the 

optional customers served while minimizing the travel time. The authors devise a two-stage 

solution method for the problem. Namely planning and execution stages. The planning stage 

begins with building routes that serve mandatory customers only and then inserting some of the 

optional customers between the mandatory ones. Both phases are formulated as a MILP. In the 

execution stage, a dynamic program is used to decide, on-line, upon skipping additional optional 

customers, if necessary. A similar solution method for a closely related routing problem was 

presented by Delage (2010).  

The literature regarding decentralized algorithms for the FSRS is still sparse. However, 

such algorithms have been developed for the closely related VRP. Zhenggang et al. (2009) 

presented an algorithm of this sort for the centralized problem. They solve a capacitated VRP with 

time windows by implementing an agent-based algorithm. In the proposed framework, a single 

scheduling agent is responsible for allocating orders among a set of vehicle agents. The allocation 

of the orders is done sequentially and follows these steps: Each order is announced by the 

scheduling agent. Next, the relevant vehicle agents calculate and send their proposed bids. Finally, 

the agent whose bid is the lowest wins the order. The authors show that excluding the 

geographically farthest agents from the bidding process of each task can save computational effort.  

In this paper, we consider a decentralized version of the field service routing problem that 

has not yet been studied. Hence, the centralized algorithms available in the literature do not provide 

a proper framework for its solution. Furthermore, although agent-based algorithms seem to 

simulate the structure of the decentralized settings, they do not consider the different objectives of 

the various parties. In addition, in a decentralized situation the parties are reluctant to share private 

business information which is not the case for the centralized situation.  Next, we discuss several 

related decentralized logistic problems, a domain in which the literature is still sparse.  

Sandholm (1993) develops a 2-stage algorithm that solves a decentralized transportation 

problem in which several independent distribution centers operate in overlapping geographical 
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areas. First, each center, seeking to minimize its transportation costs, allocates tasks to the vehicles. 

Next, the vehicles negotiate between themselves in order to receive or transfer clients in exchange 

for payments. This mechanism generates solutions that are better than a benchmark solution based 

on a real-life case study. 

Caplice and Sheffi (2006) discuss a problem in the field of freight transportation in which 

a shipper (typically a large retailer) has to buy freight transportation services from a large number 

of potential carriers. Decisions are made by conducting a single shot, first price, reverse 

combinatorial auction in which the shipper is the auctioneer and the carriers are the bidders. 

Regularly, a third-party agent manages the auction on the auctioneer's behalf. A shipper typically 

conducts an auction every two years (on average), and the bidding process usually takes several 

months.  

Huang and Xu (2013) are the first to suggest that the VCG mechanism may be used in the 

field of transportation procurement. The authors argue that this mechanism is suitable either when 

a single shipper and multiple competing carriers exist or when many shippers compete on the 

services of a single carrier. In these two cases, the mechanism induces truthful bidding and 

maximizes efficiency. The authors allow one, indivisible, bid for each bidder. Next, the authors 

relax the indivisibility constraint and present three bilateral auction mechanisms. In these 

mechanisms, carriers as well as shippers are allowed to submit their bids, one bid for each 

participant. Afterwards, the auctioneer clears the market according to some rules. The authors 

show that these mechanisms induce truthful bidding and maximize efficiency when the number of 

carriers and shippers is very large.  

In a later research, Xu and Huang (2014) study a similar problem and allow each bidder to 

submit multiple bids for bundles of items. The authors state that the VCG mechanism may be used 

to solve the problem and induces truthful bidding as well as system efficiency. However, in 

practice, the VCG is rarely applied due to the reluctance of the bidders to disclose private 

information, as well as the mechanism's complexity. Next, the authors suggest that the problem 

may be solved to optimality by a Primal-dual Vickrey auction (PDV) that induces truthful bidding 

and pays Vickrey payments under some conditions.    

To the best of our knowledge, this research is the first to study the decentralized version of 

the field service routing problem (DFSRP). We suggest that a variant of the VCG mechanism is 

applicable to the context of field service operations and present a novel decision-making 

mechanism that is computationally tractable and thus may be used in practice. The application of 

the mechanism requires formulating new optimization problems that support the decisions of the 

involved parties. The main contributions of this study lie in: 

1. Introducing and defining the DFSRP as a multi-agent allocation model in which service 

tasks that belong to a company are to be executed by a set of contractors.       
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2. Designing a novel 2-stage allocation mechanism for the decentralized problem that does 

not require the contractors to reveal their private information. The first stage offers an 

allocation method based on a series of combinatorial auctions that are resolved by the 

strategy-proof Vickrey-Clarke-Groves (VCG) mechanism. The resulted allocation is near-

optimal. In the second stage, the allocation is improved, from the contractors’ perspective, 

by a series of anonymous exchanges of tasks between the contractors.              

The rest of this paper is organized as follows: Section 2 states the DFSRP model. Section 

3 presents several variations of the task allocation mechanism. In Section 4, we benchmark these 

mechanisms and study their properties. Section 5 concludes the paper and suggests directions for 

future research. 

 

2. Problem Definition 

In this section, the decentralized field service routing problem is stated and discussed. We model 

the independently acting agents that make up the problem and develop features of a desired 

solution. Two performance measures of the suggested mechanism are presented: One is associated 

with contractors’ profitability and the other with the system’s efficiency.  

2.1 Problem setting 

The Decentralized Field Service Routing Problem (DFSRP) is stated as follows: A set of 𝑁 service 

tasks should be carried out by a company. Each task is characterized by its service time and 

location. The company provides the service by outsourcing the tasks to 𝐾 contractors. Each 

contractor is pre-committed to additional service tasks allocated by other companies. The 

parameters of the contractors' tasks constitute private information and cannot be revealed to the 

other parties. Similarly, before presenting the tasks to the contractors, their parameters are stored 

privately at the company. 

We denote the set of tasks owned by the company by 𝐼𝐶 and the sets of the pre-committed 

tasks by 𝐼𝑘 for 𝑘 = 1, … , 𝐾. Each contractor provides a single field service team, which is initially 

located at a given location, herein referred to as the contractor’s depot.  

The goal of the company is to minimize the cost of outsourcing the tasks, whereas the goal 

of each contractor is to maximize the payments obtained from the company net of its variable 

operational costs. These costs are associated with the regular time and overtime fee to his field 

service team and with the mileage its vehicle traveled. 

The traveling cost between a pair of locations 𝑖 and 𝑗 is denoted by 𝑐𝑖𝑗 and the traveling 

time by 𝑡𝑖𝑗. The service time at location 𝑖 is denoted by 𝑠𝑖. The regular time hourly salary of the 

field service team is denoted by 𝑓1. In overtime, the hourly salary increases by 𝑓2. The planning 

horizon is a single working day that consists of up to �̂� hours, among which the first 𝐿 are regular 

hours and the last �̂� − 𝐿 are overtime hours. 
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Although there is a clear conflict of interests between the company and the contractors, it 

is not a zero-sum game. Efficient allocation of tasks to contractors may benefit all the parties. 

Moreover, because the business relations between the company and the contractors are of a long-

term nature, an allocation mechanism can be agreed upon in advance and the parties are unlikely 

to abandon the agreement as long as their expected long-run benefits are greater than the 

conceivable alternatives. 

  The goal of this study is to devise an automatic allocation mechanism that satisfies the 

following requirements 

1. The mechanism allows for the allocation of tasks to contractors such that the total 

operational cost is as close as possible to that of a hypothetic omniscient central planner 

whose objective is to serve all the required tasks at a minimum cost. 

2. The mechanism does not require the contractors to reveal their private information 

regarding their pre-committed tasks. 

3. The reward obtained by each contractor is large enough to motivate him to accept the 

agreement.  

4. Implementation of the mechanism is computationally tractable. 

2.2 Performance measures 

In order to evaluate the allocation mechanisms proposed in Section 3, we define two performance 

measures that reflect the attractiveness of the method from different points of view. 

From the contractor's point of view, the greater the difference between the reward it obtains 

from the company and its marginal operational cost for serving the company, the better the solution 

is. We refer to this measure as the profitability of contractors. We are interested not only in a high 

total profit of the contractors but also in a sufficiently high profit for each one of them. 

From the society's point of view, the lower the total operational costs of the contractors, 

the better the solution is. The quality of the allocation from this perspective is evaluated by 

comparing it with an optimal allocation obtained by a hypothetic central planner who considers 

the pre-committed tasks and the other operational constraints. The gap between these two solutions 

is referred to as the price of decentralization. Clearly, the lower the price of decentralization, the 

better the decentralized solution is. We note that if the companies outsource their service tasks 

heuristically, without taking the contractors' pre-committed tasks into account, the generated 

solutions may be inefficient, and the price of decentralization may be very high.  

Calculating the abovementioned measures requires one to solve the routing problem of the 

central planner, as well as the optimization problems faced by each contractor. Although these two 

problems are not the focus of this study, we formulate and solve them for the sake of evaluating 

and benchmarking the proposed allocation mechanism. The problems are closely related but not 

identical to the field service and routing problems discussed in the literature. In the next two 



8 
 

sections, we formulate the first problem as a mixed integer program and show that the second 

problem is a special case of the first one.  

2.2.1 The problem of the central planner 

As noted, an optimal allocation of the company's tasks requires minimizing the total cost of all 

contractors while meeting certain constraints. In particular, the pre-committed tasks must be served 

by the contractor who owns them, and each of the company's tasks must be served by one of the 

contractors.  

The set of all locations, 𝐼, consists of three subsets: depots, company’s tasks and pre-

committed tasks, i.e.,   

𝐼 = {1. . 𝐾} ∪ 𝐼𝐶 ∪ ⋃𝑘∈{1,..,𝐾}𝐼𝑘 .  

Decision Variables 

𝑥𝑖𝑗𝑘 = {
1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑗𝑘 – arrival time of contractor 𝑘 at location 𝑗 

𝑇𝑘 – total working time of contractor 𝑘  

𝐸𝑘 – overtime of contractor 𝑘 

Model 

𝑀𝑖𝑛

{
 
 

 
 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘
𝑖,𝑗∈𝐼

𝑘∈{1..𝐾}

+ 𝑓1 ∑ 𝑇𝑘
𝑘∈{1..𝐾}

+ 𝑓2 ∑ 𝐸𝑘
𝑘∈{1..𝐾}

}
 
 

 
 

 (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑𝑥𝑘𝑖𝑘
𝑖∈𝐼

= 1     ∀𝑘 ∈ {1. . 𝐾} (2) 

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝐼

𝑘∈{1..𝐾}

= 1    ∀𝑖 ∈ 𝐼\{1. . 𝐾} 
(3) 

∑𝑥𝑖𝑗𝑘
𝑗∈𝐼  

= 1     ∀𝑖 ∈ 𝐼𝑘, ∀𝑘 ∈ {1. . 𝐾} (4) 

∑𝑥𝑖𝑗𝑘
𝑗∈𝐼

=∑𝑥𝑗𝑖𝑘
𝑗∈𝐼

    ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ {1. . 𝐾} (5) 
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𝑢𝑗𝑘 ≥ 𝑢𝑖𝑘 + 𝑡𝑖𝑗 + 𝑠𝑖 − �̂�(1 − 𝑥𝑖𝑗𝑘)         ∀𝑖 ∈ 𝐼  , ∀𝑗 ∈ 𝐼 , 𝑘 ∈ {1. . 𝐾} (6) 

𝑇𝑘 = ∑ 𝑥𝑖𝑗𝑘𝑠𝑖
𝑖,𝑗∈𝐼

+ ∑ 𝑥𝑖𝑗𝑘𝑡𝑖𝑗
𝑖,𝑗∈𝐼

    ∀𝑘 ∈ {1. . 𝐾} (7) 

𝐸𝑘 ≥ 𝑇𝑘 − 𝐿      𝑘 ∈ {1. . 𝐾} (8) 

𝑇𝑘 ≤ �̂�    ∀𝑘 ∈ {1. . 𝐾} (9) 

𝑥𝑖𝑗𝑘 ∈ {0,1}     ∀ 𝑘 ∈ {1. . 𝐾}, 𝑖, 𝑗 ∈ 𝐼𝑘 ∪ 𝐼
𝐶 ∪ {𝑘}  (10) 

𝐸𝑘 ≥ 0     ∀𝑘 ∈ {1. . 𝐾} (11) 

𝑢𝑗𝑘 ≥ 0    ∀ 𝑘 ∈ {1. . 𝐾}, 𝑗 ∈ 𝐼𝑘 ∪ 𝐼
𝐶 ∪ {𝑘}   (12) 

 

This model minimizes the total cost (traveling, overtime and regular time) of all 

contractors, while requiring that contractor 𝑘 begins his route at depot 𝑘 (see constraint (2)). 

Constraint (3) ensures that all the company’s tasks are served by the contractors. Constraint (4) 

states that the pre-committed tasks are served by their corresponding contractor. Constraint (5) is 

a flow conservation equality. Constraint (6) relates the variable 𝑢𝑗𝑘 that keeps track of the arrival 

time of the contractor at each task to the routing variable 𝑥𝑖𝑗𝑘 and is used to eliminate sub-tours, 

i.e., cycles that do not pass through depots. Constraint (7) calculates the total working time for the 

𝑘'th contractor by taking into account both the traveling time and the service time. Constraint (8) 

assigns the correct overtime value to each contractor and (9) limits the total overtime of contractor 

𝑘. Finally, Constraints (10), (11) and (12) define the decision variables. 

Constraint (6) is based on a well-known sub-tours elimination technique in a variety of 

vehicle routing problems originally introduced by Miller et al., (1960) in the context of the 

traveling salesman problem. The advantage of this formulation over other alternatives is that it 

eliminates the exponential number of sub-tours using a small set of constraints. Hence, it can be 

easily implemented in a commercial solver and modeling language. However, the LP relaxation 

of the formulation based on this technique is known to yield weak lower bounds, and hence, these 

formulations are typically hard to solve to optimality. Note that we are interested in the optimal 

solution of an omniscient central planner only as a reference point to the results obtained by the 

proposed allocation mechanisms. For this reference to be valid, one cannot use a sub-optimal 

solution. Therefore, in the numerical experiments reported in section 4 we present lower bounds 

for the values of the optimal solutions of our problem instances. These are values of super-optimal 

solutions obtained by using a state-of-the-art solver.  

2.2.2 Total cost for a single contractor 

The contractor's problem is a special case of the central planner's problem, in which a single vehicle 

serves all tasks associated with the contractor. As a result, constraint (4) is omitted. All the other 

constraints are adjusted to consider a single vehicle. Note that if the traveling cost is proportional 



10 
 

to the traveling time (between each pair of locations), the problem is reduced to TSP, which is 

much easier to solve.  

3 The Solution Mechanism 

A 2-stage allocation mechanism is developed and implemented in order to cope with the 

decentralized problem formulated in the previous section. In Stage A, a feasible allocation of all 

the company's tasks to contractors is created. In Stage B, the contractors are allowed to exchange 

tasks among themselves. The exchange procedure reduces the total operational cost of the 

contractors and improves the solution obtained in the first stage. 

We consider two variations of the first stage:  

a. Sequential sealed-bid combinatorial auctions. 

b. Sequential negotiation protocol. 

The second-stage procedure is studied in two different settings, with and without cash transfers 

between the contractors.  

3.1 Stage A – Allocation of tasks to contractors  

The next two subsections discuss the sealed-bid combinatorial auctions mechanism and the 

sequential negotiation protocol, respectively. 

3.1.1 Sealed-bid partial combinatorial auctions (SBPCA)       

A complete sealed-bid combinatorial auction can be used to allocate the tasks to the contractors as 

follows: The company's tasks are announced to the contractors, and each contractor is required to 

quote a bid for serving each subset of the tasks. The company then applies the strategy-proof VCG 

(Vickrey (1961), Clarke (1971) and Groves (1973)) mechanism and determines the winner of each 

task and the payments to the contractors that minimize systems' cost. The allocation obtained in 

this manner is optimal from the society's point of view. 

The applicability of the method is limited due to its high complexity. Indeed, when 

calculating the cost of serving all the subsets of 𝑁 tasks, each contractor has to solve 2𝑁 − 1 

instances of TSP, one for each subset of the company’s task along with all its pre-committed tasks.    

In order to reduce the computational effort, the proposed heuristic procedure groups the 

company's tasks into a number of clusters. The clusters are announced to the contractors one by 

one. The contractors compute the bid for all the subsets of each cluster sequentially. This process 

requires solving a much smaller number of routing problems. Based on the bids for each cluster, 

the company then applies the VCG mechanism and determines the winner of each task in the 

cluster and the reward to each contractor. Thereafter, the allocated tasks are considered as if they 

were pre-committed by their contractors. The process repeats, with a new cluster, until all the tasks 

are allocated.  
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The clusters may have different sizes, with 𝑛𝑚𝑎𝑥 denoting the maximum one. 𝑛𝑚𝑎𝑥 should 

be small enough to allow for a moderate number of TSP instances. The success of this method lies 

in the intelligent partition of tasks into clusters and in determining the order in which the clusters 

are presented. 

The steps of the proposed procedure are as follows: 

Step 1. Divide the tasks into clusters (done by the company). 

Step 2. Determine the order the clusters are communicated to the contractors (done by the 

company). 

Step 3. Compute the bids for all subsets of the tasks in the clusters (done by the contractors). 

Step 4. Apply the VCG procedure to resolve the auction. Allocate tasks and rewards to the 

contractors (done by the company). 

 The four steps of the algorithm are as follows.   

Step 1 - Clustering 

The goal is to produce clusters that contain tasks with geographically close locations because such 

clusters may be attractive (i.e., not expensive to serve) for the contractors that are either based in 

this area or have pre-committed tasks there.  

The clustering procedure is initiated when the N tasks are divided into N clusters, each 

containing a single task. At each step, the procedure scans all the pairs of clusters that contain 

jointly up to 𝑛𝑚𝑎𝑥 tasks and identifies the closest pair. The distance between a pair of clusters is 

defined by the minimal distance between two contained tasks. These two clusters are merged into 

a new cluster. The procedure stops when the number of clusters drops to a pre-specified number, 

�̅�. Clearly, �̅� should be selected such that it is greater than the number of remaining tasks divided 

by 𝑛𝑚𝑎𝑥. This procedure is inspired by the clustering method developed by Kruskal (1956).  

Step 2 - Determining the order the clusters are communicated to the contractors 

The order in which the clusters are presented to the contractors is set as follows. First, the midpoint 

of each cluster is determined as a geometric center of the locations of the tasks that make up the 

cluster. Then, the distance between a pair of clusters is calculated as the distance between their 

midpoints. The most isolated cluster, i.e., the one whose distance to its nearest neighbor is the 

greatest, is set first in the order. The order of the rest of the clusters is determined iteratively, when 

at each iteration, the closest neighbor to the previously selected cluster is presented.  

This method is based on the reasoning that offering nearby clusters one by one may enable 

a contractor that has won some tasks in one cluster to also win some tasks in the next nearby 

cluster. This procedure rationalizes the contractors’ routes.  
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Alternatively, the structure and order of the clusters can be imposed based on practical 

considerations. For example, if the tasks are originated sequentially by a call service, the company 

may manage a new auction whenever the number of accumulated tasks exceeds a threshold of, 

e.g., 𝑛𝑚𝑎𝑥 tasks. 

Step 3 - Computing the bids  

Given a cluster offered by the company, each of the contractors calculates the extra cost incurred 

by serving each subset of these tasks in addition to its pre-committed tasks. This cost can be 

calculated by subtracting the cost of a TSP solution over its pre-committed tasks from the TSP 

solution that include the pre-committed tasks and the company’s tasks in the subset. If serving 

some subset of tasks in the cluster is infeasible with respect to the working day length constraint, 

the bid is ∞. Recall that under the VCG mechanism the best response of the contractors is to bid 

their actual costs honestly. The mechanism also guarantees that the contractors’ reward will exceed 

their costs by some margin. Note, however, that the heuristic partition of the auction into clusters 

enables some speculative profits for the contractors if they are able to forecast, at some level of 

accuracy, the locations of the customers that will be offered in the next stages of the auction.   

Step 4- Determining winners and payments 

Once all the bids for a cluster are received, the company applies the VCG mechanism and allocates 

all the tasks of the cluster to contractors. This procedure is performed by selecting the set of bids 

(at most one from each contractor) that covers the entire cluster. This is a simple variant of the min 

cost set covering problem. The optimization problem (13)-(16) outlined below determines the 

winners and the payments for the clusters of more than one task. Although this problem is NP-

Hard, relatively large instances of it can be solved in short time using a commercial solver.  

Parameters 

𝒞 - the set of tasks in the cluster. 𝑃(𝒞) is the collection of all subsets of this set (the power set). 

𝑝𝑘,𝑆 - the cost communicated by contractor 𝑘 with respect to subset 𝑆.  

Decision variables 

𝑥𝑘,𝑆 = {1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑠𝑒𝑟𝑣𝑒𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The winner determination problem 

𝑍{1,..,𝐾}
∗ = 𝑚𝑖𝑛 ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆

𝑆∈𝑃(𝒞)

𝑘∈{1..𝐾}

 
(13) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
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∑ 𝑥𝑘,𝑆
𝑆∈𝑃(𝒞)

 ≤ 1          ∀𝑘 ∈ {1. . 𝐾} (14) 

∑ 𝑥𝑘,𝑆 = 1

𝑆∈𝑃(𝒞):𝑖∈𝑆

𝑘∈{1..𝐾}

        ∀𝑖 ∈ 𝒞 
(15) 

𝑥𝑘,𝑆 ∈ {0,1}       ∀𝑘 ∈ {1. . 𝐾},     𝑆 ∈ 𝑃(𝒞) (16) 

The objective function (13) minimizes the total sum of the bids (equivalent to the additional 

cost incurred by the contractors). Constraint (14) assumes that at most one bid of each contractor 

is selected. Constraint (15) stipulates that each task of the cluster is served.  

Once all tasks are allocated, the company rewards the contractors. According to the VCG 

mechanism, a contractor is rewarded for his bid plus the marginal saving incurred by its offer. Let 

𝑍𝑅
∗  be the value of the optimal solution of the winner determination problem for a set (or subset) 

of contractors 𝑅, and let 𝑥𝑘,𝑆
∗  be the optimal solution of this program for the set of all contractors 

{1, … , 𝐾}. The reward of contractor 𝑘 is formally given by: 

𝑃𝑘 = (𝑍{1..𝐾}\𝑘
∗ − 𝑍{1,…,𝐾}

∗ ) + ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶)

    (17) 

The calculation of the rewards for all the contractors requires solving (13)-(16) 𝐾 + 1 

times, once for the set of all the contractors and once for the set {1. . 𝐾}\𝑘, for each 𝑘. Clearly, 

because 𝑍{1..𝐾}\𝑘
∗ ≥ 𝑍{1,…,𝐾}

∗ , the reward for each contractor is at least as high as his bid, which is 

represented by the second term of (17). 

We note that in practice the proposed mechanism can be applied without obtaining bids for 

every possible combination of tasks from each contractor. For example, the contractors may 

choose to submit bids only for combinations that (heuristically) suit their geographical locations 

and the locations of their pre-committed tasks. By doing so, they save computational effort on their 

side and reduce the dimension of the winner determination problem.  

Illustrative example 

A simple instance of the DFSRP is presented in Figure 1.  
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Figure 1: Schematic representation of the DFSRP 

The problem consists of two contractors, C1 and C2, and of 3 service tasks, A, B, and C. 

The three service tasks, A, B, and C should be allocated among the two contractors as to minimize 

the total added cost for them. Contractor C1 has a pre-committed task P1. Similarly, P2 is a pre-

committed task that belongs to contractor C2. The service cost and service time are assumed zero.  

The length of the working day is 20 time units and the overtime cost (per time unit) is one. 

The travel costs are presented in Table 1. Note that the value NA indicates that traveling 

from origin 𝑖 to destination 𝑗 is not allowed. 

Table 1: Travel Costs 

P2 P1 C B A C2 C1  

NA 2 8 4 7 NA 0 C1 

7 NA 8 7 4 0 NA C2 

4 7 5 6 0 4 7 A 

5 3 4 0 6 7 4 B 

1 6 0 4 5 8 8 C 

NA 0 6 3 7 NA 2 P1 

0 NA 1 5 4 7 NA P2 

 

C1 and C2 are required to calculate their bids for each possible subset of the service tasks. 

These bids are calculated by solving an instance of a TSP that considers the pre-committed tasks 

of the contractor as well as the appropriate subset. The bids are presented in Table 2 

A 
B 

C1 

C2 

C 

P1 

P2 
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Table 2: Bids 

 A B C AB AC BC ABC 

C1 12 5 12 14 16 12 18 

C2 1 5 2 6 3 4 6 

Let us demonstrate the process of bid calculation on C1's bid for the bundle ABC. The TSP 

route that serves the tasks in the bundle is as follows: C1 – A – C – B – P1 – C1. The total travel 

time is 7 + 5 + 4 + 3 + 2 = 21. Recall that the length of a regular working day is 20, so the overtime 

cost is positive and equals 1. The total cost of the route is therefore 22. The original route that 

contains only pre-committed tasks is C1 – P1 – C1 with a total net cost of 4 units. Therefore, the 

bid for bundle ABC is 22 – 4 = 18.    

Note that P2, for which C2 is pre-committed, is close to tasks A and C. Therefore, C2’s 

bids for A and C are considerably lower than C1’s bids for these tasks. This demonstrates the 

desired effect of considering the pre-committed tasks. Additionally, although the cost of serving 

task B alone for contractor C2 is high, serving it along with A and C reduces its marginal cost. 

This highlights the positive effect that bidding on bundles of tasks may yield.     

The possible allocation of the service tasks to the contractors and the corresponding 

additional total cost are presented in Table 3 

Table 3: Possible allocations of the service tasks 

A B C Total added cost 

C1 C1 C1 18 

C1 C1 C2 16 

C1 C2 C1 21 

C1 C2 C2 16 

C2 C1 C1 13 

C2 C1 C2 8 

C2 C2 C1 18 

C2 C2 C2 6 

The Optimal Solution is to allocate A, B, and C to C2. The cost is 6.   

The payment for contractor C2 is the sum of two components. The first component is his 

cost in the optimal solution, i.e. 6. The second component is the difference between the optimal 

cost without the bids of C2 and the current optimal cost. In this particular case, without C2’2 bids, 

all the tasks are allocated to contractor C1, and the total cost is 18. Thus, the contribution of C2 to 

reducing the total cost is 16 – 6 = 12. The total payment for contractor C2 is therefore 6 + 12 = 18.  

Note that the optimal solution of a central planner is also to allocate all the three tasks to C2. 

An approximation property of the SBPCA solution  

Next, we show that gap between the value of the solution obtained by SBPCA mechanism and the 

optimal central planner solution is theoretically bounded by an additive constant, at least when the 
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service dominates the travel time. To this end, we consider a special case of the problem (1)-(12) 

where all depots and tasks are associated with the same (or very close) geographical location(s), 

so that the traveling times and costs can be assumed zero, 𝑐𝑖𝑗 = 0 and 𝑡𝑖𝑗 = 0 for all (𝑖, 𝑗). In such 

a case, the objective function (1) is simplified; it becomes linearly proportional to the total overtime 

of the contractors, 

𝑍 = 𝑀𝑖𝑛∑ 𝐸𝑘𝑘∈{1..𝐾} .  

This follows since the first term in (1) vanishes and the second term is constant  

∑ 𝑇𝑘𝑘∈{1..𝐾} = ∑ 𝑠𝑖𝑖∈𝐼 , 

i.e., it does not depend on the allocation of the tasks to the contractors. 

 Despite the simplification, the problem remains NP-hard, since it is equivalent to the 

problem of scheduling a set of jobs on parallel machines with the objective of minimizing the total 

tardiness about a common due date. The machines are the contractors, and the common due date 

is L.  

For the discussion and proof below let us define the following notation with respect to a 

fixed allocation of the tasks obtained by SBPCA.  Let 𝐶𝑘 be the completion time of contractor 

(machine) 𝑘 and and let 𝑠𝑘 be the duration of the last task allocated to contractor 𝑘. We define the 

following sets of contractors. 

𝐴 = {𝑘: 𝐶𝑘 > 𝐿}  and   𝐵 = {𝑘: 𝐶𝑘 ≤ 𝐿} 
 

(18) 

Clearly, 𝐴 is the set of contractors that finish the work after the regular working hours, and 

thus incur overtime cost while 𝐵 is the set of the rest of the contractors. Since the SBPCA 

procedure schedule all the tasks in a cluster optimally with respect to the already decided tasks the 

following property holds regardless of the cluster size (i.e., even if it one). 

 

Property 1: With respect to the SBPCA allocation mechanism, if 𝐵 is not empty then any late 

contractor has exactly one tardy task, and the start time of the tardy task is not greater that the 

completion time of any early contractor, i.e.,  

𝐶𝑘 − 𝑠𝑘 ≤ 𝐶𝑘′    for all    𝑘 ∈ 𝐴 and  𝑘′ ∈ 𝐵,                             (19) 

The above property follows from the local optimality of the allocated tasks by the VCG 

mechanism. Indeed, if  (19) is violated one of the allocated tasks can be moved from a contractor 

in 𝐴 to one in 𝐵 to reduce the total over time. 

The next proposition proves an upper bound of the gap between the optimum allocation of the 

tasks and the allocation resulted from the Sealed-bid combinatorial auction described above.  
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Proposition 1.  

(𝑍𝑆𝐵𝐴 − 𝑍∗) ≤
𝐾−1

2
𝑠𝑚𝑎𝑥. 

Proof.  Note that 𝑍𝑆𝐵𝐴 = ∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 .  If 𝐴 is empty then 𝑍𝑆𝐵𝐴 = 𝑍∗ = ∑ 𝑠𝑖𝑖∈𝐼 − 𝑘𝐿 and if 𝐵 is 

empty then 𝑍𝑆𝐵𝐴 = 𝑍∗ = 0. Therefore, we consider only the case where both A and B are not 

empty. By Property 1 the inequality (19) holds for any pair of late and early contractors. Therefore, 

it holds also for the averages, 

1

|𝐴|
∑ (𝐶𝑘 − 𝑠𝑘)𝑘∈𝐴 ≤

1

|𝐵|
∑ 𝐶𝑘𝑘∈𝐵 .                                               (20) 

Inequality (20) is equivalently re-written as 

∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 ≤
|𝐴|

|𝐵|
∑ (𝐶𝑘 − 𝐿)𝑘∈𝐵 + ∑ 𝑠𝑘𝑘∈𝐴 .                                  (21) 

The proof of the proposition is divided into two cases. Consider first the case where 

∑ 𝐶𝑘
𝐾
𝑘=1 ≤ 𝐾 ∙ 𝐿.                                                      (22)  

By rearranging terms in (22), 

∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 ≤ ∑ (𝐿 − 𝐶𝑘)𝑘∈𝐵 ,                                            (23) 

moreover, by summing (21) and (23), 

∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 ≤
|𝐵|−|𝐴|

2|𝐵|
∑ (𝐿 − 𝐶𝑘)𝑘∈𝐵 +

1

2
∑ 𝑠𝑘𝑘∈𝐴 .                             (24) 

Since by definition, 𝑠𝑘 ≤ 𝑠𝑚𝑎𝑥 for all  𝑘, and also 𝐿 − 𝐶𝑘 ≤ 𝑠𝑚𝑎𝑥 for all  𝑘 ∈ 𝐵, inequality (24) is 

further developed, 

𝑍𝑆𝐵𝐴 = ∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 ≤
|𝐵|−|𝐴|

2|𝐵|
|𝐵|𝑠𝑚𝑎𝑥 +

1

2
|𝐴|𝑠𝑚𝑎𝑥 =

|𝐵|

2
𝑠𝑚𝑎𝑥 ≤

𝐾−1

2
𝑠𝑚𝑎𝑥. 

Now since 𝑍∗ ≥ 0, this proves the proposition in the case of (22).  

In the opposite case,  

∑ 𝐶𝑘
𝐾
𝑘=1 > 𝐾 ∙ 𝐿,                                                  (25) 

the cost of the optimal allocation is bounded from below as  

𝑍∗ ≥ ∑ 𝐶𝑘
𝐾
𝑘=1 − 𝐾 ∙ 𝐿, 

or, equivalently, 

∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 − 𝑍∗ ≤ ∑ (𝐿 − 𝐶𝑘)𝑘∈𝐵 .                                     (26) 
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By summing (21) and (26), 

2∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 − 𝑍∗ ≤
|𝐵|−|𝐴|

|𝐵|
∑ (𝐿 − 𝐶𝑘)𝑘∈𝐵 + ∑ 𝑠𝑘𝑘∈𝐴 . 

Similarly to the previous case, the latter is developed into, 

∑ (𝐶𝑘 − 𝐿)𝑘∈𝐴 − 𝑍∗ ≤
𝐾−1

2
𝑠𝑚𝑎𝑥, 

and thus, 

(𝑍𝑆𝐵𝐴 − 𝑍∗) ≤
𝐾 − 1

2
𝑠𝑚𝑎𝑥 

which completes the proof of the proposition.  ∎ 

Note that while the total gap between the SBPCA solution and the central planner optimal solution 

grows with the number of contractors. The average gap per contractor is thus bounded by 
1

2
𝑠𝑚𝑎𝑥. 

3.1.2 Sequential Negotiation (SN) 

The Sequential negotiation method is an alternative task allocation mechanism that automates a 

multi-lateral negotiation process in which the company is the leader, and the contractors are the 

followers. The company sets a reward (prize) for each task. In each negotiation session, all the 

remaining unallocated tasks and corresponding rewards are presented to one of the contractors. 

The contractor is then allowed to select a subset of the tasks to serve and collect the corresponding 

reward. The same offer is presented to the contractors according to some arbitrary sequence. After 

all the contractors have received and reacted to the offer, the rewards are increased, and a new 

negotiation round is initiated. The process ends when all tasks are allocated. 

 The negotiation process described above is not a strategy-proof one. Indeed, a contractor 

may refuse to accept an offer that is profitable for him in expectation for a better offer later in the 

process, if he believes that no other contractor will take the offer sooner. However, as the number 

of contractors increases, the monopolistic power of the contractors diminishes, and it is more likely 

that they will agree to accept offers that exceed their marginal costs only slightly. Moreover, the 

marginal costs of each contractor change from day to day and even between the rounds of the 

negotiation process because they are affected by the location of the pre-committed tasks and the 

offered tasks. Therefore, each contractor may have very little knowledge about the costs of his 

competitors, a fact that also reduces the opportunities for speculative gains. The following 

discussion assumes that no speculative considerations are made by contractors. The validity and 

the implications of this assumption should be verified in a behavioral experiment, possibly in the 

field. 

Three factors determine the dynamics of the negotiation: the order in which the contractors 

are negotiated, the initial prizes, and the method by which the prizes are incremented.  
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Contractors could be negotiated according to a fixed order (round robin). However, doing 

so would be unfair because the contractors who are negotiated first are favored over those who are 

negotiated last.  

Another option would be fixing a certain negotiation order for the first iteration and then 

reversing this order repeatedly until all tasks are allocated. However, under such ordering, a 

contractor may know the number and even the identity of the contractors that will be negotiated 

before his next negotiation session. As an extreme example, the last contractor should never accept 

the first (or any odd numbered) offer because he will be the first to obtain the first offer in the next 

round.  

In contrast to the previous options, the generation of a random order in each negotiation 

round appears to be a reasonable choice. Using this approach, no contractor obtains an a priori 

advantage, and it is more difficult for the contractors to successfully apply speculative 

considerations that may result in awarding higher prizes. 

We propose setting the initial prizes of the tasks by a function of the service time of the 

task, 𝑟𝑖 = 𝑔(𝑠𝑖). The higher the service time is, the higher the prize offered for the task will be.  

In order to maintain the correlation between the service time of a task and the prize of that 

task, the prize is multiplied by a constant 𝑏 in each subsequent round. The value of the parameter 

𝑏 is greater than 1. Thus, the prize for each task grows exponentially with the number of iterations.  

The set of tasks that contractor k commits to in the current iteration is obtained by solving 

the following variant of the prize collecting routing problem.  

The prize collecting problem of contractor k 

Additional parameters 

𝐼�̂� - set of tasks that contractor 𝑘 is committed to (either pre-committed to other companies or 

committed to the same company in pervious negotiation rounds). Contractor k's depot is also 

included in the set. 

𝐼𝑜 – set of tasks the company offers contractor 𝑘 

𝐼 = 𝐼�̂� ∪ 𝐼
𝑜 – set of all geographical locations in the problem 

Decision variables 

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑗 – arrival time of contractor at location 𝑗 

𝑇– total working time of contractor  
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𝐸– Duration of overtime  

Model  

𝑀𝑎𝑥 {∑ 𝑟𝑖𝑥𝑖𝑗 −

𝑖,𝑗∈𝐼𝑐

∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑖,𝑗∈𝐼

− 𝑇𝑓1 − 𝐸𝑓2} (27) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑𝑥𝑖𝑗
𝑗∈𝐼

≤ 1      ∀𝑖 ∈ 𝐼𝑜 (28) 

∑𝑥𝑖𝑗
𝑗∈𝐼

= 1     ∀𝑖 ∈ 𝐼�̂� (29) 

∑𝑥𝑖𝑗
𝑗∈𝐼

=∑𝑥𝑗𝑖
𝑗∈𝐼

     ∀𝑖 ∈ 𝐼   (30) 

𝑢𝑗 ≥ 𝑢𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖 − �̂�(1 − 𝑥𝑖𝑗)    ∀𝑖 ∈ 𝐼         ∀𝑗 ∈ 𝐼\{𝑘} (31) 

𝑇 = ∑ 𝑥𝑖𝑗𝑠𝑖
𝑖,𝑗∈𝐼

+∑ 𝑥𝑖𝑗𝑡𝑖𝑗
𝑖,𝑗∈𝐼

 (32) 

𝐸 ≥ 𝑇 − 𝐿    (33) 

𝑇 ≤ �̂� (34) 

𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖, 𝑗 ∈ 𝐼 (35) 

𝐸 ≥ 0  (36) 

𝑢𝑗 ≥ 0     ∀𝑗 ∈ 𝐼 (37) 

The model maximizes the sum of prizes net of costs (regular time, over time and traveling). 

Constraint (28) allows the contractor to skip some offered tasks, and constraint (29) ensures that 

he serves all the previously committed tasks. Constraint (30) is a flow conservation equation. 

Constraint (31) relates the variable 𝑢𝑗  that keeps track on the arrival time of the contractor at each 

task to the routing variable 𝑥𝑖𝑗. Constraint (32) calculates the total working time. Constraints (33)-

(34) limit and calculate the overtime. The three last constraints define the decision variables. The 

problem results in obtaining the set of new tasks the contractor is ready to commit to, assuming 

the value of the optimal solution of this model is greater than the (negative) value of the cost of 

serving only the previously committed tasks 

𝐼𝑠 = {𝑖|∃𝑗, 𝑥𝑖𝑗 = 1,   𝑖 ∈ 𝐼
0}                                                                             (38)     
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3.2 Exchanging tasks between the contractors 

Stage A uses the mechanisms described in Section 3.1 to produce allocations of the company's 

tasks to the contractors. Stage B, developed in this section, is intended to further decrease the total 

operational cost of the contractors by allowing them to exchange the company's tasks among 

themselves. An Exchange of task 𝑖 with task 𝑗 is defined from the point of view of the contractor 

who serves task 𝑖 and means removing task 𝑖 from his route and inserting task 𝑗 into the route 

instead. Note that the payments received from the company in Stage A are not exchanged.   

We note that the company has nothing to gain or lose directly from the outcomes of Stage B. 

However, because the profitability of the contractors may be improved and the relationships 

between the company and contractors are of a long-term nature, it is in the interest of the company 

to allow it. The exchange process can be facilitated by the company itself or by a third-party 

middleman who need not be aware of the location and content of the tasks. Thus, the contractors 

do not need to disclose sensitive business information to the company. We refer to the manager of 

the exchange process as the automatic controller.  

We offer the following protocol for Stage B:  

 The company communicates the locations and durations of its service tasks to all the 

contractors. 

 Each contractor calculates the potential profit that he could gain when exchanging task 𝑖 

(that it serves) with task 𝑗 (that it does not serve). The profit is denoted by 𝑎𝑖𝑗.  

 The value of 𝑎𝑖𝑗 is communicated to the automatic controller.  

 The automatic controller searches for a set of exchanges that maximizes the sum of profits 

for the contractors.  

 The exchanges are carried out, and possibly money is transferred between the controller 

and the contractors. 

 The process repeats until no set of exchanges that yields positive net profit for all the 

contractors exists. 

The information communicated by the contractors regarding 𝑎𝑖𝑗 is likely to affect the 

performance of the protocol. Two levels of information are considered in this study: 

1. Complete information (CI) – the amount and the sign (positive/negative) of the profit. 

2. Partial information (PI) – the sign (positive/negative) of the profit only.   

For each of these levels of information, we propose a different exchange mechanism. In 

particular, for CI we propose a mechanism that involves money transfers between the contractors, 

which can be performed with the mediation of the automatic controller. For the PI case, we propose 

a simpler exchange mechanism that does not require monetary transfers. 
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3.2.1 Calculation of the profits  

Each contractor is required to calculate the profit associated with the exchange of each task 𝑖 (that 

it serves) with each task 𝑗 (that is served by another contractor). To this end, the contractor 

calculates his cost in the current state (with 𝑖 in the route and without 𝑗), as well as his cost in the 

alternative status (without 𝑖 and with 𝑗). The two costs are obtained by solving the problem (1)-

(12) with appropriately modified input. The value of 𝑎𝑖𝑗 is obtained by subtracting the latter cost 

from the former one. For the case of CI, the profit is communicated to the automatic controller 

(amount and sign). If an exchange is infeasible, then 𝑎𝑖𝑗 = −∞ is communicated. 

When the only communicated information is the sign of the profit, the automatic controller 

sets 𝑎𝑖𝑗 = 1 for the profitable exchanges and 𝑎𝑖𝑗 = −∞ for the unprofitable ones. 

3.2.2 Finding best sets of feasible exchanges 

Once 𝑎𝑖𝑗 is calculated for all pairs of the company’s tasks 𝑖, 𝑗 ∈ 𝐼𝐶, the automatic controller 

identifies the best set of feasible exchanges. Let us define a complete weighted directed graph 𝐷 =

(𝑁, 𝐴), where each node represents a task, and let 𝑎𝑖𝑗 be the weight of arc (𝑖, 𝑗). A feasible set of 

exchanges constitutes a directed circle on this graph. The total weight of the circle represents the 

net cost reduction for all the involved contractors. Thus, the problem of finding the best set of 

exchanges can be cast as the problem of finding a maximal weight set of disjoint circles in the 

graph. However, recall that each arc (𝑖, 𝑗) in the graph is associated with a contractor who is the 

original owner of task 𝑖. Clearly, the profit 𝑎𝑖𝑗 is calculated assuming only 𝑖 and 𝑗 are exchanged 

and all the other tasks of the contractor remain the same. Hence, for the weight of the circles to 

truly represent the profit gained from the exchange, we allow the selection of at most one arc of 

each contractor.  

Notations 

𝐼�̃� – set of company's tasks allocated to contractor 𝑘 

𝐼𝐶 = ⋃𝑘𝐼�̃� - set of all company's tasks 

For simplicity and without loss of generality, we assume 𝑎𝑖𝑗 = 0 for all pairs of tasks 𝑖, 𝑗 allocated 

to the same contractor. 

Decision Variables 

𝑦𝑖𝑗 = {
1 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Model 
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𝑀𝑎𝑥 {∑ 𝑎𝑖𝑗𝑦𝑖𝑗
𝑖,𝑗∈𝐼𝑐

} (39) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑𝑦𝑖𝑗
𝑗∈𝐼𝐶

= ∑ 𝑦𝑗𝑖
𝑗∈𝐼𝐶

    ∀𝑖 ∈ 𝐼𝐶 (40) 

∑𝑦𝑖𝑗
𝑗∈𝐼𝐶

≤ 1    ∀𝑖 ∈ 𝐼𝐶 (41) 

∑𝑦𝑖𝑗
𝑖∈𝐼�̃�
𝑗∈𝐼𝐶

≤ 1    𝑘 ∈ {1. . 𝐾} 
(42) 

𝑦𝑖𝑗 ∈ {0,1} (43) 

 

The problem maximizes the sum of weights of the circles while ensuring that a removed 

task appears in the routes of another contractor (constraint (40)). Each task is exchanged at most 

once (constraint (41)) and each contractor exchanges no more than one task (constraint (42)).  

In the case of PI, in which 𝑎𝑖𝑗 is either 1 or minus infinity, solving (39)-(43) simply means 

maximizing the number of performed exchanges. All exchanges chosen by the model are profitable 

for the corresponding contractors.  

In the case of CI, the solution of the model, in fact, maximizes the total gain of all the 

contractors. However, the optimal exchanges can be unprofitable for some contractors. Consider, 

for example, three tasks with 𝑎𝑖𝑗 given in Table 4. 

Table 4: The values of 𝑎𝑖𝑗  for three tasks 

 1 2 3 

1  -2 −∞ 

2 −∞  8 

3 8 3  
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The possible exchanges are represented by the graph given in Figure 2.  

 

            

 

 

 

Figure 2: Graph for the example of Table 4 

In the example, the maximum total profit is 14. Note that obtaining this profit suggests 

exchanging task 1 with task 2, which results in a negative profit of 2 for the owner of task 1. To 

make this arrangement acceptable by this contractor, money transfers should be applied.  

3.2.3 Money transfers 

A situation in which some contractors have negative profits when the most profitable set of 

exchanges is applied can be resolved by money transfers, when contractors whose profits are large 

subsidize the contractors whose profits are low (or negative). Recall that the total profit gain from 

the exchange of all the contractors is positive. This net profit can be distributed among all 

contractors such that each contractor is ensured a positive net profit. Deciding how to distribute 

the total profit derives the corresponding subsidies for all contractors.  

Let �̃� be a set of tasks that constitute a circle in the obtained solution and �̃� be the set of 

contractors that own the tasks in �̃� (each contractor owns one task). The total profit gained by 

implementing the exchanges suggested by �̃� is ∑ 𝑎𝑖𝑗𝑖,𝑗∈𝐶 . If contractor 𝑘 ∈ �̃� exchanges task 𝑖 with 

task 𝑗, then his profit is 𝑎𝑖𝑗. If the desired profit of contractor 𝑘 is 𝜋𝑘, then the corresponding 

subsidy equals 𝜋𝑘 − 𝑎𝑖𝑗. Clearly, if ∑ 𝜋𝑘𝑘 = ∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃� , then the sum of subsidies is 0, and no extra 

money is required to perform the transfers.    

Because the values of 𝑎𝑖𝑗 are known, what is left to determine is 𝜋𝑘 – the desired profit for 

contractor 𝑘. We suggest that the profit of each contractor is equal, i.e., 𝜋𝑘 = 𝜋 =
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
. The 

corresponding subsidy for contractor is 
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
− 𝑎𝑖𝑗. We note that this distribution constitutes a 

solution to a Nash's bargaining game for more than two players (Nash 1950).    

3.2.4 Stage B – Discussion 

Stage B ensures that all contractors are better off or indifferent in each iteration of the method. 

This claim holds both for the case of CI and for the case of PI. However, truthfully reporting 𝑎𝑖𝑗 

1 

−∞ 
−∞ 

8 2- 

8 

3 
3 2 
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values may not be an optimal strategy for the contractors. Consider the scenario illustrated in 

Figure 3.    

  

 

 

 

      

                     

Figure 3: Example graph of truthful bidding   

The maximal total gain for the contractors equals 6. The gain is obtained when the 

contractor who owns task (1) and the contractor who owns task (2) exchange their tasks. Each of 

the contractors gains 3 units of money from the exchanges, and no money is transferred. Hence, 

each contractor is better off by 3 units. The contractor who owns (3) is not a part of the solution 

and therefore is not affected.        

Note that the contractor who owns (3) can report false values of his potential profits and 

by doing so becomes a part of the set of exchanges. This set will be sub-optimal from the 

perspective of the system. Consider the alternative graph displayed in Figure 4.    

  

 

 

 

 

      

Figure 4: Example graph of untruthful bidding   

From the perspective of the automatic controller, the maximal profit equals 6.5 and is 

obtained when the contractor who owns task (2) and the contractor who owns task (3) exchange 

tasks between them. The profit of each contractor should be 
6.5

2
= 3.25. Thus, the contractor who 

owns task (3) pays 5.5 − 3.25 = 2.25 units of money as a subsidy to the contractor who owns (2). 

The former's real net profit equals 4-2.25 = 1.75. The system's real net profit equals 4+1 = 5. In 

1 

3 

1 

3 

3 

2 

4 

1 2 

3 

1 "5.5" 

3 

3 
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other words, a contractor can successfully manipulate the mechanism to output a sub-optimal 

solution that is better for him.            

Successful manipulations carried out by dishonest contractors are also possible in the case 

of PI.   

Consider the example shown in Figure 5. 

 

 

 

 

Figure 5: Example graph of truthful reporting   

Suppose that contractor 𝑘1 owns tasks (1) and (4), contractor 𝑘2 owns tasks (2) and (5) and 

contractor 𝑘3 owns task (3). Because all possible exchanges are profitable, reporting truthfully 

leads to executing the exchanges implied in the circle that contains the highest number of arcs, that 

is, the circle that contains 3 arcs. All contractors are better off.   

Now, suppose that the exchanges implied in the 2-arc circle yield the highest profit for 

contractor 𝑘2. The latter can report a (false) negative profit from executing the exchanges implied 

by the 3-arc circle, thus making it unfeasible in the eyes of the automatic controller. Figure 6 

illustrates this report. 

 

 

 

 

 

Figure 6: Example graph of untruthful reporting   

By reporting untruthfully, contractor 𝑘2 manipulated the controller and made him choose 

the set of exchanges preferred by him, although they are sub-optimal from the perspective of the 

society.  

To conclude, the mechanisms presented for Stage B are not strategy-proof. However, we 

propose including the mechanism as an improvement heuristic for the solution generated in Stage 

A. This recommendation is based on the following practical and theoretical reasons. 
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First, in practice, for a contractor to successfully manipulate the system, he needs to have 

information regarding the 𝑎𝑖𝑗 of the other contractors, which is not likely. Without this 

information, each contractor can secure a non-negative profit by truthfully reporting his 𝑎𝑖𝑗. 

Second, none of the contractors can be worse off as a result of the exchanges due to one of the 

abovementioned mechanisms. 

Proposition: The proposed exchange mechanism does not reduce the profit of each of the 

contractors in either version of Stage B regardless of the information available to the contractors 

and the action of the other contractors. 

Proof: We first show that, under both mechanisms and regardless of the actions of the other 

contractors, a contractor can secure a non-negative improvement in his profit by bidding truthfully. 

Thus, no contractor submits a bid that results in a loss. 

For the version of Stage B without money transfers, the claim is trivial. In this case, only 

exchanges that are reported by the contractors as profitable are carried out. Thus, any truthful 

bidder can improve his profit. 

For the version of Stage B with money transfers, consider a contractor who owns task 𝑖1 

but does not own task 𝑗1 and let �̅�𝑖1𝑗1 be the true (possibly negative) profit of this contractor from 

trading 𝑖1 for 𝑗1. Now, assuming he bids truthfully, that is, 𝑎𝑖1𝑗1 = �̅�𝑖1𝑗1, and that the exchange is 

carried out, he will receive the direct profit 𝑎𝑖1𝑗1 and the subsidy =
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
− �̅�𝑖1𝑗1. That is, he will 

receive a total of 
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
. This is a positive value because regardless of the truthfulness of the bids 

of the other contractors, the circle �̃� is selected by the mechanism only if ∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�  is positive. 

This concludes the proof.  ∎ 

 

4. Numerical Experiments 

We have conducted numerical experiments to evaluate the effectiveness of the mechanisms 

developed in the previous section. The results of the experiments are presented and analyzed with 

respect to the performance measures defined in Section 2.  

4.1 Problem Instances 

An instance of the problem is characterized by the locations and durations of all service tasks 

(those of the company and those pre-committed by the contractors) as well as by the locations of 

the contractors. The locations of the contractors remain fixed for all the generated instances of the 

problem, whereas the locations of the service tasks change across the problem instances.  
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The number of tasks in each instance is set to 40, half of which are pre-committed tasks 

and the rest are company's tasks. The number of contractors is set to four such that the size of the 

generated instances is large enough to demonstrate the outcomes of the proposed mechanisms. 

Realistic instances of the problem are likely to be larger. However, testing the mechanisms with 

larger instances would require developing and implementing stronger solution methods (exact or 

heuristic) for the underlying routing problem, which is out of the scope of this study. Recall that 

our focus here is to study the ability of the mechanisms to induce efficient allocation of the tasks 

to the contractors.  

For each instance, the locations of the tasks were randomly generated on a 100 × 100 

square using a continuous uniform distribution (𝑥𝑖~𝑈(0,100), 𝑦𝑖~𝑈(0,100)). The locations of 

the contractors' depots were set to (25,25), (25,75), (75,75) and (75,25). The durations of service 

tasks (in minutes) were generated using a normal distribution with an expectancy of 30 and a 

standard deviation of 10 (𝑠𝑖~𝑁(30, 10
2)).       

The length of a regular working day is set to 𝐿 = 480 minutes (eight hours), and the 

maximum length of a working day, including overtime, is set to �̂� = 720 minutes (twelve hours). 

The cost of regular working time is set to 𝑓1 = 3.33 money units per minute (i.e., 200 per hour). 

The additional cost of overtime is set to 𝑓2 = 1.67 (i.e., extra 50%). The traveling cost and 

traveling time between each two points are set to the Euclidian distance between the points. This 

definition implies that the cost of traveling is 1 unit of money per unit of distance (e.g., km) and 

that the traveling speed is one (e.g., km/min).  

The tasks are randomly partitioned to the company’s tasks and pre-committed ones. We 

used a parametric probabilistic procedure that relates pre-committed tasks to the contractors with 

a probability that decreases with the traveling time from their locations. This approach is practical 

because a task is more likely to be served by a nearer contractor. For pre-committed task 𝑖, we 

defined the probability that the task belongs to contractor 𝑘 as  

Pr(𝑖 ∈ 𝐼𝑘) =
(
1
𝑡𝑖𝑘
)
𝛼

∑ (
1
𝑡𝑖𝑘
)
𝛼

𝑘

                   (44) 

where 𝑡𝑖𝑘 is the traveling time between the locations of task 𝑖 and contractor 𝑘. Parameter 𝛼 

controls the clustering structure of the instance. The larger the value of 𝛼 is, the higher is the 

probability of relating a task to its nearest contractor. However, because we wish to create balanced 

instances, we fixed the number of tasks to be related to each of the four contractors to five (exactly 

one quarter of the number of pre-committed tasks).  
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We generated 20 datasets of 40 service tasks locations and times. For each dataset, the 

locations of the 20 company tasks were randomly selected. The rest of the tasks (pre-committed) 

were related to contractors using (44) for 𝛼 = 1 and for 𝛼 = 3. That is, we created 40 instances of 

the problem in total. The input for these instances is available upon request from the corresponding 

author. 

 

 

(a) 𝛼 = 1 

 

 

(b) 𝛼 = 3 

Figure 7: Optimal routes serving the pre-committed tasks only, for 𝛼 = 1 and 𝛼 = 3     

Figure 7 demonstrates two such instances, with the routes of the contractors serving their 

pre-committed tasks only. The diamonds represent the contractors’ depots. The route and pre-

committed locations of each contractor are shown in different colors. Whereas in the case of 𝛼 =

3 (Figure 7b) most of the pre-committed tasks are related to their nearest contractor (or at least – 

second nearest), for 𝛼 = 1 (Figure 7a) the relation appears almost random. Consequently, the 

initial routes for 𝛼 = 3 are much shorter than the initial routes for 𝛼 = 1.  

4.2 A heuristic allocation used as a baseline 

In practice, companies that outsource their service tasks to several contractors typically allocate 

the tasks using simple geographic considerations. A service zone is defined for each contractor, 

and service calls are allocated based on this zoning. If a contractor is overloaded such that he 

cannot handle tasks from his zone, the task is allocated to a contractor in a neighboring zone. To 

benchmark our method, we imitate such heuristic allocation and compare its performance measure 

with the allocation obtained by our mechanism. 

We use the following heuristic method: The tasks are first scanned in increasing order of 

the distance to their nearest contractor. Then, the tasks are iteratively allocated to the nearest 

contractor. In order to balance the work load of each contractor, the number of the company's tasks 
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allocated to a single contractor is limited to ⌈
𝑁

𝐾
⌉ tasks (5 in our case). Once a contractor has received 

5 tasks, he is removed from further consideration. 

After applying this procedure, the shortest tour for each contractor is found, and the total 

working time (service and routing) is calculated. The total cost of this allocation is the sum of the 

total costs of the contractors. Below, we refer to this procedure as HE. 

4.3 Mechanism parameters 

In this section, we present the values of the parameters for the suggested versions of Stage A of 

the allocation mechanism. Recall that there are no parameters to define in Stage B. 

For the SBPCA, 𝑛𝑚𝑎𝑥 (maximal size of each cluster) must be defined. As noted, the effectiveness 

of the solution increases with 𝑛𝑚𝑎𝑥. However, the value of 𝑛𝑚𝑎𝑥 is limited due to the complexity 

of the combinatorial auction and the need to conduct it in a reasonable time. This arises the need 

to evaluate the tradeoff between the duration of the procedure and the obtained results. We 

therefore selected two values for 𝑛𝑚𝑎𝑥 i.e.  𝑛𝑚𝑎𝑥 = 1 and 𝑛𝑚𝑎𝑥 = 8. When 𝑛𝑚𝑎𝑥 = 1, the number 

of clusters �̅� = 20 and the auction reduces to a simple Vickrey auction and is carried out relatively 

fast. When 𝑛𝑚𝑎𝑥 = 8, choosing �̅� = 𝐾 = 4 seems adequate and the procedure requires much 

larger computation time. Comparing the obtained results for the two values of 𝑛𝑚𝑎𝑥 enables us to 

derive insights regarding the added value of the SBPCA procedure.  

For the SN mechanism, we considered two values for 𝑔(𝑠𝑖), i.e. 𝑔(𝑠𝑖) = 100% × 𝑓1 ×

𝑠𝑖 = 100% ×
10

3
× 𝑠𝑖 and 𝑔(𝑠𝑖) = 150% × 𝑓1 × 𝑠𝑖 = 150% ×

10

3
× 𝑠𝑖 for 𝑟𝑖. Recall that 𝑠𝑖 is the 

service time in minutes and 𝑓1 is the cost of one minute of regular working time. Note that 𝑟𝑖 =

100% ×
10

3
× 𝑠𝑖 is the minimal prize for which it may be possible to have a contractor who is 

willing to serve task 𝑖. This is the case only if the task is located exactly on the route of a contractor 

and the contractor has enough spare regular time to serve it. Allocating the task to the contractor 

in such a case incurs neither additional traveling cost nor overtime cost. Even in this case, the net 

profit from serving the task is zero. Therefore, it is reasonable from the company's point of view 

to begin the negotiation offering this prize.  

However, offering 𝑟𝑖 = 100% ×
10

3
× 𝑠𝑖 may result in low profits for the contractors. If the 

company wishes to maintain the profits of the contractors at a reasonably high level, it may choose 

to begin the negotiation with higher values for 𝑟𝑖. We selected 𝑟𝑖 = 150% ×
10

3
× 𝑠𝑖 as a 

benchmark for such values. Clearly, increasing the value of the initial prizes may increase the 

profitability for the contractors. However, this may also result in less efficient solutions.  

The increase rate of the prize was set to 𝑏 = 1.1 for the two values of 𝑔(𝑠𝑖).  
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4.4 Computational environment 

Experiments were carried out using an Intel® core ™ i7-2600 CPU @ 3.40 Ghz processor and 16 

GB of RAM. The MILP models were solved using IBM CPLEX 12.5.1.  

The TSP (presented in section 2.2.2) and the prize-collecting problem of the contractor 

(presented in section 3.1.2) were solved directly using CPLEX with time limits of 10 seconds and 

1800 seconds, respectively. Both of these time limits were typically sufficient to obtain optimal 

solutions for the two problems. The winner determination problem in the combinatorial auction 

and the problem of finding the best set of exchanges (see sections 3.1.1 and 3.2.2 respectively) 

were solved to optimality in less than one second.  

4.5 Experimental procedure 

As previously noted, 40 instances were generated. For each instance, all variations of Stage A were 

applied, and the obtained allocations were kept. Next, the two variations of Stage B were applied 

for each allocation of Stage A.  

Note that Stage B is also considered for the allocation generated heuristically. This 

consideration is valuable because applying Stage B, performed between the contractors 

themselves, is possible even without applying collaborative mechanisms designed to generate the 

initial allocation.  

4.6 Results 

We now present the results of the experiments for the procedure described above. The results are 

analyzed using the performance measures defined in Section 2. A solution to the decentralized 

problem is defined by an allocation of the company's tasks to the contractors and by the sum of the 

prizes that the company pays the contractors.  

Total cost for the contractors 

The total cost incurred by the contractors is compared with the cost of the optimal allocation that 

a central planner with complete information could have found. Because the optimal solution of the 

central planner problem is not always available, due to the complexity issue, the comparison is 

carried out relative to the best lower bound that the solver provides. The lower bounds are 

presented in Appendix A. Note that the lower bounds for 𝛼 = 3 are tighter, and in many cases the 

model is solved to optimality. This approach is taken because the central allocation problem is 

easier to solve when the pre-committed tasks of each contractor are more clustered.  

We examine the suggested mechanisms by considering the total cost of the allocations that 

they generate and comparing this cost with that of the optimal allocation of the central planner (or 

a lower bound whenever the optimal solution cannot be found). We report the gap between the 
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cost of the allocation obtained by the mechanisms and the optimal cost. This gap represents the 

price of decentralization and is calculated as follows: 100% × (1 −
𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝑐𝑜𝑠𝑡

𝑀𝑒𝑐ℎ𝑛𝑖𝑠𝑚 𝐶𝑜𝑠𝑡
) . The 

abovementioned gap is presented in Table 5 for the variations of Stage A as well as for the heuristic 

method as a baseline. For each method, we present the average gap (over the 20 instances) and the 

standard deviation. The results are reported for the outcome of Stage A only as well as with both 

variations of Stage B, i.e., with partial information and no money transfers (PI) and with money 

transfers and complete information (CI). For the detailed results of all instances, see Appendixes 

B and C.      

Table 5: Average optimality gaps and standard deviations for generated allocations 

𝜶 = 𝟑 𝜶 = 𝟏   

Stage B 

With 

money 

transfers 

Stage B 

without 

money 

transfers 

Stage 

A only 

Stage B 

With 

money 

transfers 

Stage B 

without 

money 

transfers 

Stage 

A only 
  

1.40% 1.56% 1.63% 3.96% 4.45% 4.57% Average SBPCA 

𝑛𝑚𝑎𝑥 = 1 

(Vickrey) 0.33% 0.36% 0.37% 0.49% 0.56% 0.58% Std. 

1.26% 1.37% 1.41% 3.69% 3.93% 3.96% Average 
SBPCA 

𝑛𝑚𝑎𝑥 = 8 
0.30% 0.30% 0.30% 0.48% 0.46% 0.45% Std. 

1.38% 1.60% 1.74% 3.76% 4% 4.14% Average SN 

𝑟𝑖 = 100%×
10

3
× 𝑠𝑖 0.28% 0.31% 0.31% 0.47% 0.50% 0.52% Std. 

1.79% 2.78% 3.39% 4.06% 5.13% 5.31% Average SN 

𝑟𝑖 = 150%×
10

3
× 𝑠𝑖 0.28% 0.36% 0.44% 0.43% 0.50% 0.50% Std. 

1.61% 3.52% 5.70% 4.29% 6.5% 9.57% Average 

HE 

0.31% 0.50% 0.76% 0.49% 0.63% 0.71% Std. 

 

For 𝛼 = 1, the total cost generated by applying the SBPCA with  

𝑛𝑚𝑎𝑥 = 8  is significantly lower than the total cost generated by SBPCA with  

𝑛𝑚𝑎𝑥 = 1 (p-value=0.005).  However, this result is not significant for the case of  𝛼 = 3 (p-

value=0.1). For 𝛼 = 3, the initial routes are clustered and routes, do not overlap. In this case, 

allocating each task to the lowest bidder separately and sequentially is more likely to result in a 

good solution. Additionally, the next announced task in the sequence is the one closest to the 

previous one. This approach also helps to build efficient solutions at each step in the sequence. 

The added value from considering many tasks at the same auction is greater when the routes 

overlap. This is the case when 𝛼 = 1.  
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In the SN method, the gap of the obtained solution increases with the initial prize 𝑟𝑖. This 

result is statistically significant (p-value<0.001).  This can be explained by the fact that higher 

prizes may attract contractors to accept tasks that they are less fit to serve. For both values of 𝛼, 

the total cost of the allocations generated by applying the SBPCA or the SN are significantly lower 

than the total cost of the allocations generated by the baseline heuristic approach, the comparisons 

with all other methods are significant with p-value<0.02.  

The improvement gained by applying Stage B with money transfers is always significant. 

The advantage of Stage B with money transfers over the version without transfers is apparent and 

statistically significant for most of the combinations of 𝛼 and Stage A methods. The detailed output 

of the statistical tests is presented in Appendix D. 

The average gaps for 𝛼 = 3 are lower than for 𝛼 = 1. Therefore, it appears that all 

variations of Stage A perform better for 𝛼 = 3. This result can be an indication of a weakness of 

the mechanism for 𝛼 = 1. Another possible explanation for the higher optimality gap is the fact 

that the lower bounds for the 𝛼 = 1 instances are looser. In our view the latter explanation is more 

likely because while many of the 𝛼 = 3 instances of the central planner problem were solved to 

optimality, there was only one optimal solution among the 𝛼 = 1 instances.  

The contribution of Stage B is more significant if the allocation of Stage A is far from the 

central planner optimum. The experiments that used the heuristic allocation demonstrated it best. 

In fact, applying the heuristic method and then Stage B results in a fairly good allocation for both 

values of 𝛼. Indeed, one may argue that one viable protocol is to first allocate the tasks heuristically 

based on their geographical locations and then apply Stage B with money transfers. Such an 

approach will yield an allocation that is only slightly less efficient than the ones obtained by the 

other alternatives, and it is much easier to implement. In addition, it allows generating feasible 

allocations immediately and then improving them gradually until the beginning of the working 

day.  

Profitability of the contractors 

We observed that the suggested mechanism yields good allocation of tasks from a social point of 

view and results in a low price of decentralization. Next, we discuss the profitability of the 

allocation from the contractors’ point of view. The net profit (sum of prizes net of additional costs) 

of the contractors for 𝛼 = 1 and for 𝛼 = 3 is presented in Table 6.  

In this section, we consider profits for contractors generated after Stage A. Stage B reduces the 

contractors' costs and thus further improves the allocation and the contractors' profits. However, 

we do not address this aspect because our emphasis is on the interaction between the contractors 

and the company.  
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   Table 6: Net profit for the contractors for 𝛼 = 1 and for 𝛼 = 3 

 𝛼 = 1 𝛼 = 3 
Instance 

number 
SBPCA 

𝑛𝑚𝑎𝑥
= 1 

(Vickrey) 

SBPCA 

𝑛𝑚𝑎𝑥
= 8 

SN 

𝑟𝑖
= 100%

×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖
= 150%

×
10

3
× 𝑠𝑖 

SBPCA 

𝑛𝑚𝑎𝑥
= 1 

SBPCA 

𝑛𝑚𝑎𝑥
= 8 

SN 

𝑟𝑖
= 100%

×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖
= 150%

×
10

3
× 𝑠𝑖 

1 1772.92 913.09 149.43 597.80 1347.79 1134.17 154.04 659.23 

2 1433.94 1027.03 157.02 757.56 2342.59 1371.40 130.92 630.40 

3 2034.95 1251.09 141.29 715.58 1723.01 1227.91 150.36 707.02 

4 823.84 662.86 142.42 481.27 2035.87 1375.68 145.90 570.36 

5 464.95 809.16 150.61 658.21 2377.78 1189.86 170.73 645.89 

6 2397.3 1187.74 127.86 532.40 1798.2 1059.35 160.79 520.30 

7 612.18 606.85 171.51 773.06 730.76 740.02 175.90 698.42 

8 1618.38 1158.19 179.42 639.50 2082.3 1453.00 156.11 818.94 

9 512.57 456.28 161.70 666.73 1927.06 1294.44 139.52 575.97 

10 1147.84 1015.29 175.18 617.72 1562.36 1456.81 173.57 652.09 

11 1265.72 812.38 123.39 713.12 2454.05 1518.07 105.11 487.60 

12 1221.1 821.37 166.35 427.45 1718.86 974.15 193.06 454.74 

13 821.41 938.66 162.98 572.50 927.62 976.97 105.39 672.72 

14 681.73 652.75 148.10 545.65 988.6 1063.06 157.14 545.75 

15 858.05 915.98 139.52 1011.72 2323.33 1360.43 115.43 1025.33 

16 1688.22 950.68 184.64 590.53 2444.54 1464.86 200.33 1061.23 

17 907.52 375.43 147.10 518.58 1436.15 1177.07 158.93 739.83 

18 894.99 868.99 131.11 592.53 1822.73 1017.98 143.57 502.44 

19 698.38 700.23 169.65 909.51 1325.61 1010.55 152.72 739.97 

20 852.64 1103.27 164.62 903.88 1807.31 1415.64 144.39 705.02 

The results above show that the suggested mechanism is always profitable for the contractors (even 

before applying Stage B). The profit for the contractors is the highest in the SBPCA with  

𝑛𝑚𝑎𝑥 = 1. In this case, the prize for each task is the second lowest bid. This bid is calculated based 

on the marginal cost of that task. That is, the sum of prizes is the sum of the marginal costs. 

Typically, this sum is higher than the additional cost incurred when serving a bundle of tasks. The 

latter being the basis for the bid calculation in SBPCA with  

𝑛𝑚𝑎𝑥 = 8. It is also the basis for the cost estimation of the set of tasks to be served in the sequential 

negotiation.   

The profit for the contractors is the lowest for the SN with 𝑟𝑖 = 100% ×
10

3
× 𝑠𝑖. Note, 

however, that our evaluation of the profits of the contractors is based on the assumption that the 

contractors do not apply strategic considerations in their bids. This assumption is fairly realistic 

for the “nearly” strategy-proof SBPCA procedure but not necessarily for the SN procedure. In 

practice, the contractors may gain higher profit by speculatively differing their offers in the SN 

procedure.  
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The detailed output of the statistical tests we conducted is presented in Appendix E. 

Summary of several key features of the various allocation methods is presented in Table 7.  

 

   Table 7: Summary of features of the various allocation methods 

 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

(Vickrey) 

SBPCA 

𝑛𝑚𝑎𝑥 = 8  

SN 

𝑟𝑖

= 100% ×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖

= 150% ×
10

3
× 𝑠𝑖 

HE 

Computational 

complexity 
Medium High Medium Medium Low 

Efficiency of 

allocation 

Close to SBPCA 

with 

𝑛𝑚𝑎𝑥 = 8 

 

Usually the 

best 

Very close to 

SBPCA with 

𝑛𝑚𝑎𝑥 = 8 

  

Medium 

Poor. 

However, 

can be 

significantly 

improved by 

Stage B 

Profits for 

contractors 
Very high Medium Low Medium NA 

No allocation method is dominant over all the other methods in all aspects. In practice, the 

appropriate allocation method may vary from one organization to another.   

5. Conclusions and future research 

The Decentralized Field Service Routing Problem (DFSRP) is faced by companies that provide 

service to a set of spatially dispersed clients by outsourcing their tasks to contractors. The 

contractors are interested in maximizing their net profit, which is affected by the location of other 

tasks for which they are pre-committed. The contractors are reluctant to reveal information about 

these pre-committed tasks since this is a sensitive private information. 

 The game theoretic literature provides us with a strategy-proof auction mechanism that 

guarantees a socially optimal allocation of items to buyers (or tasks to service providers in our 

case). However, this mechanism is computationally intractable because it requires an exponential 

number of bids from each agent. Moreover, in the context of the DFSRP, the calculation of the 

value of each bid is an NP-hard problem. In this paper, we present several mechanisms that allow 

for a nearly optimal allocation of the tasks among the contractors and the determination of the 

compensation that is worthy for all the contractors. While none of the mechanisms presented in 

the paper are strategy-proof, it appears that the speculative power of the contractors is limited and 

decreases with the number of parties. We note that if the number of tasks and contractors is very 

large, the speculative power of the contractors is likely to diminish. In the future, it may be 

interesting to study the exact effect of these possible speculations on the allocation of the tasks. 
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 The important message of this study is that, with a proper allocation mechanism, it is 

possible to reach a very efficient assignment of tasks to contractors even without a central planner 

that is aware of the exact cost structure of all the involved parties. In particular, we demonstrate 

that a sealed-bid partial combinatorial auction (SBPCA) leads to a very efficient solution.  The 

computational complexity of this procedure may be excessively large, especially in a real-time 

setting. In such a case the company may reduce the size of the clusters it posts. Indeed, we see that 

even when the auction is reduced to a simple Vickrey auction (when the company posts one task 

at a time), the outcome is still relatively efficient. Another attractive option is to use a sequential 

negotiation mechanism, which is less demanding from a computational point of view and leaves 

the company with a fairly good control of the division of the profits between it and the contractors. 

In such a case, a higher level negotiation process between the parties is required to determine the 

parameters of the mechanism in the long run. When considering both computational viability, 

efficiency and degree of control of the company none of the offered mechanisms dominate the 

others. In practice, the companies should select a method and parameters that fit its situation the 

best. The mechanism itself may be an issue for a long run negotiation between the company and 

the contractors. 

 The DFSRP offers several interesting directions to pursue in future research. From a 

computational point of view, scaling up the solution methods presented in this paper, possibly by 

the introduction of heuristic methods, is required for real-world applications of the mechanisms. 

The introduction of additional features into our model is also required, e.g., adding time windows 

for the tasks. Another interesting detection is to formulate an on-line version of the problem in 

which requests for service arrive over time. The task exchange mechanisms presented in Section 

3.2 can be adapted to this on-line setting. Finally, considering the operation of “a field service 

market” where many companies and contractors interact is also of interest. 
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Appendix A: Lower bounds for the optimal cost for the system with 

outsourcing 

Table 8: Lower bounds for optimal cost for the system with outsourcing 

Instance 𝛼 = 1 𝛼 = 3 

1 7,779.69 7,824.62 

2 8,049.80 7,221.82* 

3 6,947.65* 6,997.63 

4 8,446.17 7,380.88* 

5 8,779.09 7,742.64* 

6 7,092.55 7,275.30 

7 7,186.92 6,983.97 

8 8,144.45 7,472.00* 

9 7,498.11 6,747.02* 

10 8,258.01 7,714.24* 

11 7,360.57 6,498.73* 

12 8,615.89 8,382.35 

13 7,236.78 7,513.61 

14 8,444.39 7,508.69 

15 7,084.75 7,040.39* 

16 8,243.94 7,804.34* 

17 7,941.98 7,301.47* 

18 8,652.95 7,820.74 

19 8,217.27 7,839.24 

20 8,143.69 8,025.45* 

(*) optimal value 
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Appendix B: Total costs and price of decentralization for the Stage A 

allocations  

Table 9: Total cost for the system where 𝛼 = 1 – Stage A 

Instance 

number 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8  

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

HE 
Lower 

Bound 

1 8286.5 8,236.02 8,256.81 8266.58 8,731.69 7,779.69 

2 8247.68 8,233.19 8,280.96 8334.31 8,788.40 8,049.80 

3 6947.65 *  6,947.65 *  6,947.65 * 7309.8 7,734.98 6,947.65 

4 8754.4 8,845.24 8,788.95 8906.53 9,559.13 8,446.17 

5 9502.72 9,398.03 9,419.45 9439.62 10,040.73 8,779.09 

6 7135.19 7,212.65 7,163.86 7214.22 7,743.36 7,092.55 

7 7752.48 7,632.09 7,686.71 7839.27 8,234.74 7,186.92 

8 8382.21 8,301.97 8,359.60 8487.59 8,669.23 8,144.45 

9 8229.64 8,073.02 8,152.05 8179.99 8,392.12 7,498.11 

10 8375.01 8,442.16 8,375.01 8454.86 8,704.11 8,258.01 

11 7591.17 7,564.64 7,603.17 7590.47 7,854.78 7,360.57 

12 8959.377 8,845.67 8,865.63 9049.52 9,377.40 8,615.89 

13 7778.82 7,645.04 7,739.59 7753.32 8,464.54 7,236.78 

14 8746.91 8,698.67 8,735.79 8821.91 9,386.67 8,444.39 

15 7585.07 7,429.68 7,570.47 7871.63 7,626.25 7,084.75 

16 8854.39 8,849.32 8,852.16 8850.17 9,738.38 8,243.94 

17 8483.17 8,276.70 8,147.31 8404 8,236.28 7,941.98 

18 8948.65 8,994.01 8,945.85 8999.72 9,639.17 8,652.95 

19 8761.5 8,714.72 8,704.65 8802.92 9,312.26 8,217.27 

20 8480.37 8,400.98 8,440.42 8428.7 8,835.62 8,143.69 

Table 10: Total cost for the system where 𝛼 = 3 – Stage A 

Instance 

number 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8  

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

HE 
Lower 

Bound 

1 8,071.56 7,985.52 8,025.02 8,027.67 8,401.74 7,824.62 

2 * 7,221.82 *   7,221.82 * 7,250.86 7,287.23 7,912.04 7,221.82 

3 7,089.41 7,179.43 7,158.86 7,082.64 7,781.13 6,997.63 

4 7,404.30  7,380.88 * 7,404.30 7,465.77 8,027.10 7,380.88 

5 7,764.26 7,821.84 7,796.30 7,894.23 8,189.30 7,742.64 

6 7,447.29 7,376.49 7,550.65 7,592.08 7,646.72 7,275.30 

7 7,232.81 7,137.19 7,171.33 7,239.81 7,814.13 6,983.97 

8 7,510.27 7,563.11 7,595.83 7,914.25 7,896.91 7,472.00 

9 6,771.11 6,780.42 6,792.17 6,890.50 7,026.31 6,747.02 

10 7,792.16 7,821.31 7,897.59 8,071.67 7,744.66 7,714.24 

11 6,506.42 6,542.59 6,538.46 6,773.85 6,972.02 6,498.73 

12 8,594.27 8,566.44 8,607.65 8,714.79 9,001.12 8,382.35 

13 7,847.28 7,817.55 7,845.06 7,823.25 8,526.62 7,513.61 

14 7,552.96 7,571.87 7,576.37 7,598.47 7,847.23 7,508.69 

15 * 7,040.39 * 
  7,040.39 

* 
7,079.17 7,616.42 7,136.32 7,040.39 

16 7,852.01 7,830.63 7,837.26 8,315.46 8,093.60 7,804.34 

17 7,357.13 7,353.42 7,328.63 7,381.37 7,380.08 7,301.47 

18 8,133.10 8,056.60 8,070.49 8,244.09 8,095.92 7,820.74 

19 8,281.50 8,216.80 8,202.17 8,218.23 8,560.44 7,839.24 

20 8,201.28 8,027.63 8,076.99 8,255.83 8,178.86 8,025.45 
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Table 11: Prices of decentralization where 𝛼 = 1 – Stage A 

Instance 

number 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8  

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

HE 

1 6.12% 5.54% 5.78% 5.89% 10.90% 

2 2.40% 2.23% 2.79% 3.41% 8.40% 

3 0.00% 0.00% 0.00% 4.95% 10.18% 

4 3.52% 4.51% 3.90% 5.17% 11.64% 

5 7.61% 6.59% 6.80% 7.00% 12.57% 

6 0.60% 1.67% 1.00% 1.69% 8.40% 

7 7.30% 5.83% 6.50% 8.32% 12.72% 

8 2.84% 1.90% 2.57% 4.04% 6.05% 

9 8.89% 7.12% 8.02% 8.34% 10.65% 

10 1.40% 2.18% 1.40% 2.33% 5.13% 

11 3.04% 2.70% 3.19% 3.03% 6.29% 

12 3.83% 2.60% 2.82% 4.79% 8.12% 

13 6.97% 5.34% 6.50% 6.66% 14.50% 

14 3.46% 2.92% 3.34% 4.28% 10.04% 

15 6.60% 4.64% 6.42% 10.00% 7.10% 

16 6.89% 6.84% 6.87% 6.85% 15.35% 

17 6.38% 4.04% 2.52% 5.50% 3.57% 

18 3.30% 3.79% 3.27% 3.85% 10.23% 

19 6.21% 5.71% 5.60% 6.65% 11.76% 

20 3.97% 3.06% 3.52% 3.38% 7.83% 

Average 4.57% 3.96% 4.14% 5.31% 9.57% 

Standard 

deviation 
0.58% 0.45% 0.52% 0.50% 0.71% 
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Table 12: Prices of decentralization where 𝛼 = 3 – Stage A 

Instance 

number 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8  

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

HE 

1 3.06% 2.01% 2.50% 2.53% 6.87% 

2 0.00% 0.00% 0.40% 0.90% 8.72% 

3 1.29% 2.53% 2.25% 1.20% 10.07% 

4 0.32% 0.00% 0.32% 1.14% 8.05% 

5 0.28% 1.01% 0.69% 1.92% 5.45% 

6 2.31% 1.37% 3.65% 4.17% 4.86% 

7 3.44% 2.15% 2.61% 3.53% 10.62% 

8 0.51% 1.20% 1.63% 5.59% 5.38% 

9 0.36% 0.49% 0.66% 2.08% 3.97% 

10 1.00% 1.37% 2.32% 4.43% 0.39% 

11 0.12% 0.67% 0.61% 4.06% 6.79% 

12 2.47% 2.15% 2.62% 3.81% 6.87% 

13 4.25% 3.89% 4.23% 3.96% 11.88% 

14 0.59% 0.83% 0.89% 1.18% 4.31% 

15 0.00% 0.00% 0.55% 7.56% 1.34% 

16 0.61% 0.34% 0.42% 6.15% 3.57% 

17 0.76% 0.71% 0.37% 1.08% 1.07% 

18 3.84% 2.93% 3.09% 5.14% 3.40% 

19 5.34% 4.59% 4.42% 4.61% 8.42% 

20 2.14% 0.03% 0.64% 2.79% 1.88% 

Average 1.63% 1.41% 1.74% 3.39% 5.70% 

Standard 

deviation 
0.37% 0.30% 0.31% 0.44% 0.76% 
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Appendix C: Prices of decentralization for the Stage B allocations 

Table 13: Prices of decentralization for 𝛼 = 1 – after Stage B 

Instance 

number 

SBPCA

+ PI  
𝑛𝑚𝑎𝑥 = 1  

SBPCA+ 

CI 

𝑛𝑚𝑎𝑥 = 1  

SBPCA+ 

PI  
𝑛𝑚𝑎𝑥 = 8  

SBPCA+ 

CI 

𝑛𝑚𝑎𝑥 = 8  

SN+ 

PI  
𝑟𝑖 =

100%×
10

3
× 𝑠𝑖  

SN+ 

CI  
𝑟𝑖 =

100%×
10

3
× 𝑠𝑖  

SN+ PI  
𝑟𝑖 =

150%×
10

3
× 𝑠𝑖  

SN+ CI  
𝑟𝑖 =

150%×
10

3
× 𝑠𝑖  

HE + 

PI 

HE + 

CI 

1 6.12% 4.98% 5.54% 5.35% 4.85% 4.77% 5.35% 4.24% 6.78% 4.24% 

2 2.40% 2.40% 2.23% 2.23% 2.79% 2.79% 3.41% 2.50% 4.16% 3.76% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.95% 3.05% 10.00% 2.10% 

4 3.52% 3.52% 4.51% 3.92% 3.90% 3.52% 5.17% 4.43% 4.45% 3.50% 

5 7.38% 6.48% 6.59% 6.44% 6.80% 6.42% 6.73% 6.32% 8.96% 8.30% 

6 0.60% 0.60% 1.67% 1.45% 1.00% 1.00% 1.69% 1.69% 3.00% 1.84% 

7 6.98% 5.84% 5.83% 5.66% 6.00% 5.55% 8.32% 7.13% 7.89% 5.81% 

8 2.84% 2.84% 1.90% 1.90% 2.57% 2.57% 4.04% 3.07% 4.69% 3.39% 

9 8.89% 7.94% 7.12% 7.07% 8.02% 7.43% 8.34% 6.48% 8.75% 7.57% 

10 1.40% 1.40% 1.90% 1.43% 1.40% 1.40% 2.33% 1.63% 4.28% 1.43% 

11 3.04% 2.58% 2.70% 1.24% 2.75% 2.75% 2.77% 1.99% 4.37% 2.31% 

12 3.83% 3.83% 2.60% 2.01% 2.82% 2.74% 4.79% 2.92% 5.92% 4.48% 

13 6.47% 6.47% 5.34% 5.08% 6.14% 5.83% 6.66% 6.14% 9.80% 5.50% 

14 2.95% 2.66% 2.53% 2.53% 3.34% 2.41% 4.28% 2.57% 6.70% 2.71% 

15 6.60% 4.75% 4.64% 4.64% 6.42% 5.32% 9.67% 6.12% 6.21% 4.93% 

16 6.89% 6.89% 6.84% 6.84% 6.87% 6.85% 6.85% 6.83% 13.77% 8.83% 

17 5.86% 3.50% 4.04% 3.60% 2.52% 2.52% 3.28% 2.59% 3.57% 3.20% 

18 3.30% 3.30% 3.79% 3.70% 3.27% 3.27% 3.85% 3.38% 5.57% 3.62% 

19 6.21% 5.54% 5.71% 5.71% 5.60% 5.12% 6.65% 5.13% 7.64% 5.83% 

20 3.78% 3.71% 3.06% 3.01% 2.98% 2.91% 3.38% 3.01% 3.40% 2.38% 

Average 4.45% 3.96% 3.93% 3.69% 4.00% 3.76% 5.13% 4.06% 6.50% 4.29% 

Standard 

deviation 
0.56% 0.49% 0.46% 0.48% 0.50% 0.47% 0.50% 0.43% 0.63% 0.49% 
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Table 14: Prices of decentralization for 𝛼 = 3 – after Stage B 

Instance 

number 

SBPCA

+ PI  
𝑛𝑚𝑎𝑥 = 1  

SBPCA+ 

CI 
𝑛𝑚𝑎𝑥 = 1  

SBPCA+ 

PI  
𝑛𝑚𝑎𝑥 = 8  

SBPCA+ 

CI 
𝑛𝑚𝑎𝑥 = 8  

SN+ 

PI  
𝑟𝑖 =

100%×
10

3
× 𝑠𝑖  

SN+ 

CI  
𝑟𝑖 =

100%×
10

3
× 𝑠𝑖  

SN+ PI  
𝑟𝑖 =

150%×
10

3
× 𝑠𝑖  

SN+ CI  
𝑟𝑖 =

150%×
10

3
× 𝑠𝑖  

HE + 

PI 

HE + 

CI 

1 3.06% 2.08% 2.01% 2.01% 1.70% 1.70% 2.53% 2.22% 5.34% 1.84% 

2 0.00% 0.00% 0.00% 0.00% 0.40% 0.40% 0.90% 0.74% 6.10% 1.39% 

3 1.29% 1.29% 2.53% 2.53% 2.25% 1.40% 1.20% 1.05% 3.80% 1.10% 

4 0.32% 0.32% 0.00% 0.00% 0.32% 0.32% 1.14% 1.14% 3.49% 2.55% 

5 0.00% 0.00% 0.42% 0.42% 0.69% 0.37% 1.92% 1.63% 5.45% 4.37% 

6 2.31% 2.11% 1.37% 1.37% 3.65% 2.44% 4.17% 3.93% 3.87% 1.91% 

7 3.44% 2.74% 2.15% 1.71% 2.61% 2.61% 3.53% 3.04% 4.42% 1.62% 

8 0.51% 0.51% 1.20% 0.98% 1.63% 1.63% 5.59% 0.88% 4.12% 0.45% 

9 0.36% 0.29% 0.49% 0.49% 0.66% 0.58% 2.08% 0.23% 2.40% 0.32% 

10 1.00% 1.00% 1.37% 0.65% 2.32% 1.15% 3.31% 1.79% 0.39% 0.39% 

11 0.12% 0.12% 0.67% 0.67% 0.61% 0.61% 1.05% 1.05% 5.19% 0.39% 

12 1.74% 1.74% 2.15% 2.15% 2.47% 1.70% 3.81% 1.65% 2.50% 1.95% 

13 4.25% 3.92% 3.59% 3.36% 3.45% 3.45% 3.96% 3.19% 8.57% 3.19% 

14 0.59% 0.59% 0.83% 0.27% 0.39% 0.39% 1.18% 1.18% 1.19% 0.75% 

15 0.00% 0.00% 0.00% 0.00% 0.55% 0.55% 4.38% 0.65% 0.59% 0.59% 

16 0.61% 0.61% 0.34% 0.34% 0.42% 0.42% 1.13% 0.41% 2.85% 1.54% 

17 0.76% 0.76% 0.71% 0.71% 0.37% 0.37% 1.08% 1.08% 1.07% 0.08% 

18 3.84% 3.84% 2.93% 2.93% 3.09% 3.09% 5.14% 3.50% 3.40% 2.78% 

19 4.79% 4.68% 4.59% 4.59% 4.42% 4.41% 4.61% 4.59% 5.37% 4.69% 

20 2.14% 1.31% 0.03% 0.03% 0.00% 0.00% 2.79% 1.76% 0.26% 0.26% 

Average 1.56% 1.40% 1.37% 1.26% 1.60% 1.38% 2.78% 1.79% 3.52% 1.61% 

Standard 

deviation 
0.36% 0.33% 0.30% 0.30% 0.31% 0.28% 0.36% 0.28% 0.50% 0.31% 
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Appendix D: Prices of decentralization for the Stage B allocations 

Table 15: P-values for paired t-tests for the α = 1 instances – Stage A 

This (𝑖, 𝑗) item in the table is the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 for 𝐻0: 𝜇𝑖 − 𝜇𝑗 = 0, 𝐻1: 𝜇𝑖 − 𝜇𝑗 < 0  

 
SBPCA 

𝑛𝑚𝑎𝑥 = 8 

SN 

𝑟𝑖 = 100%×
10

3
× 𝑠𝑖 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SN 

𝑟𝑖 = 150%×
10

3
× 𝑠𝑖 

HE 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 
 0.15  5 ∗ 10−3 2 ∗ 10−4 2.7 ∗  10−9 

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

  0.02 3 ∗ 10−4 4.5 ∗  10−9 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 
   0.01 2.1 ∗  10−7 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

    1.4 ∗  10−6 

Table 16: P-values for paired t-tests for the 𝛼 = 3 instances – Stage A 

This (𝑖, 𝑗) item in the table is the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 for 𝐻0: 𝜇𝑖 − 𝜇𝑗 = 0, 𝐻1: 𝜇𝑖 − 𝜇𝑗 < 0  

 
SBPCA 

𝑛𝑚𝑎𝑥 = 8 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SN 

𝑟𝑖 = 100%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖 = 150%×
10

3
× 𝑠𝑖 

HE 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 
 0.1 0.01 3 ∗ 10−4 1.2 ∗  10−6 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 
  0.32 10−3 4.9 ∗  10−6 

SN 

𝑟𝑖

= 100%×
10

3
× 𝑠𝑖 

   8 ∗ 10−4 5.6 ∗  10−6 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

    0.01 
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Table 17: P-values for paired t-tests for the α = 1 instances – SBPCA and 𝑛𝑚𝑎𝑥 = 8 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 3 ∗ 10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.08 

Table 18: P-values for paired t-tests for the α = 3 instances – SBPCA and 𝑛𝑚𝑎𝑥 = 8  

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.02 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 7 ∗ 10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.09 

 

Table 19: P-values for paired t-tests for the α = 1 instances – SBPCA and 𝑛𝑚𝑎𝑥 = 1 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2.3 ∗  10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 1.3 ∗  10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 8.2 ∗  10−3 

Table 20: P-values for paired t-tests for the α = 3 instances – SBPCA and 𝑛𝑚𝑎𝑥 = 1  

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.02 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝐶𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 3 ∗ 10−3 

𝐻0: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 = 0 

𝐻1: 𝜇𝑆𝐵𝑃𝐶𝐴+𝑃𝐼 − 𝜇𝑆𝐵𝑃𝐶𝐴 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.054 

 

Table 21: P-values for paired t-tests for the α = 1 instances – SN and 𝑟𝑖 = 100% ×
10

3
× 𝑠𝑖 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−3 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−4 

𝐻0: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.02 

Table 22: P-values for paired t-tests for the α = 3 instances – SN and 𝑟𝑖 = 100% ×
10

3
× 𝑠𝑖 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.02 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 8 ∗ 10−4 

𝐻0: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.02 
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Table 23: P-values for paired t-tests for the α = 1 instances – SN and 𝑟𝑖 = 150% ×
10

3
× 𝑠𝑖 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 6.2 ∗  10−3 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 5.2 ∗  10−6 

𝐻0: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.06 

Table 24: P-values for paired t-tests for the α = 3 instances – SN and 𝑟𝑖 = 150% ×
10

3
× 𝑠𝑖 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−3 

𝐻0: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝐶𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−3 

𝐻0: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 = 0 

𝐻1: 𝜇𝑆𝑁+𝑃𝐼 − 𝜇𝑆𝑁 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.04 

 

Table 25: P-values for paired t-tests for the α = 1 instances – heuristic allocation  

𝐻0: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸+𝑃𝐼 = 0 

𝐻1: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 1.4 ∗  10−5 

𝐻0: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸 = 0 

𝐻1: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 10−9 

𝐻0: 𝜇𝐻𝐸+𝑃𝐼 − 𝜇𝐻𝐸 = 0 

𝐻1: 𝜇𝐻𝐸+𝑃𝐼 − 𝜇𝐻𝐸 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 6.25 ∗  10−7 

 

Table 26: P-values for paired t-tests for the α = 3 – heuristic allocation  

𝐻0: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸+𝑃𝐼 = 0 

𝐻1: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸+𝑃𝐼 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 4.58 ∗ 10−5 

𝐻0: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸 = 0 

𝐻1: 𝜇𝐻𝐸+𝐶𝐼 − 𝜇𝐻𝐸 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 2.7 ∗  10−6 

𝐻0: 𝜇𝐻𝐸+𝑃𝐼 − 𝜇𝐻𝐸 = 0 

𝐻1: 𝜇𝐻𝐸+𝑃𝐼 − 𝜇𝐻𝐸 < 0 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 4.84 ∗  10−5 
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Appendix E: Payments to the contractors 

Table 27: P-values for paired t-tests for the α = 1 instances – Stage A 

This (𝑖, 𝑗) item in the table is the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 for 𝐻0: 𝜇𝑖 − 𝜇𝑗 = 0, 𝐻1: 𝜇𝑖 − 𝜇𝑗 > 0  

 
SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 

SN 

𝑟𝑖 = 150%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖 = 100%×
10

3
× 𝑠𝑖 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 
 3.6 ∗  10−3   10−3 6.3 ∗  10−8 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 
  1.4 ∗  10−3 2 ∗ 10−11 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

   2.7 ∗  10−12 

Table 28: P-values for paired t-tests for the 𝛼 = 3 instances – Stage A 

This (𝑖, 𝑗) item in the table is the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 for 𝐻0: 𝜇𝑖 − 𝜇𝑗 = 0, 𝐻1: 𝜇𝑖 − 𝜇𝑗 > 0  

 
SBPCA 

𝑛𝑚𝑎𝑥 = 1 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 

SN 

𝑟𝑖 = 150%×
10

3
× 𝑠𝑖 

SN 

𝑟𝑖 = 100%×
10

3
× 𝑠𝑖 

SBPCA 

𝑛𝑚𝑎𝑥 = 1 
 2.8 ∗  10−6 5.2 ∗  10−9 1.1 ∗  10−11 

SBPCA 

𝑛𝑚𝑎𝑥 = 8 
  6.5 ∗  10−10 3.8 ∗  10−15 

SN 

𝑟𝑖

= 150%×
10

3
× 𝑠𝑖 

   4.2 ∗  10−12 

 


