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Abstract 
In this study, we introduce a logistic model for the delivery of small parcels to a set of 

service points (SPs), and we present effective methods for solving it. In the traditional 

delivery model, each recipient specifies a single location at which they wish to receive 

the parcel; however, when SPs are used, many recipients may have no strong preference 

among several locations, e.g., near the recipient’s home address, near the recipient’s 

office, or in the recipient’s favorite shopping mall. If some recipients are flexible and 

willing to provide the sender with more than one delivery location, it is possible to 

perform the delivery task at lower cost and within a shorter amount of time. Our 

solution methods are based on the concepts of the savings heuristic, the petal method 

and tabu search with a large neighborhood. An extensive numerical study is conducted 

to evaluate our solution methods and demonstrate the benefits of our model compared 

to the traditional nonflexible one. We also present a simulation study to demonstrate 

that our model can be adapted to a stochastic and dynamic environment. 

1 Introduction and literature review 
This paper addresses the last leg of the delivery process for small parcels, i.e., from a 

regional depot to the recipient. This leg is responsible for a significant share of the costs 

in the parcel delivery industry (Goodman, 2005). One method to reduce these costs is 

by delivering parcels to recipients through local service points (SPs) located near the 

recipients instead of bringing each parcel directly to the recipient’s address. These SPs 

may be either staffed facilities, such as post offices and grocery stores, or self-service 

facilities, such as automated parcel lockers. Cost savings are achieved through the 

consolidation of shipments to fewer locations, avoiding the need for time 

synchronization between the couriers and recipients and eliminating the time-

consuming task of locating the recipients’ addresses (Faugere and Montreuil, 2017). 

From the recipient perspective, receiving parcels at SPs rather than at home may be less 

convenient, but the cost savings may translate into lower shipment tariffs. Moreover, 

for some recipients, avoiding the need to synchronize with the courier may be desirable. 

Using the shipment data of a courier company operating in West Sussex in the 

United Kingdom, Song et al. (2009) found that the use of staffed SPs instead of home 

delivery significantly reduced travel costs and the average delivery time. The policy of 

this company is to call recipients to ask them to collect their parcels from the depot if 

they are not available to receive their parcels at home. Under this policy, the mean travel 
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distance of the recipients is also reduced since the SPs are generally located much closer 

than the depot. 

The use of SPs for parcel delivery is gaining popularity in Europe and the US. 

For example, in France, as of 2014, more than 20% of parcels were already being 

delivered to SPs in stores (Morganti et al., 2014). It is probable that the share of 

automated and staffed SPs has increased since then. 

An automated parcel locker system (APLS) is a parcel collection service that 

allows customers to have their parcels delivered to SPs and pick them up at any time of 

day using digital pickup codes. The use of automated service points may further 

economize the delivery process since automated SPs are available 24/7 and lines are 

less likely to form at automated SPs than at attended facilities. Such services are 

provided by many mail and courier companies, e.g., Amazon Locker in the US, BoxIt 

in Israel and DHL PackStation in Germany. Each SP hosts lockers of various sizes and 

a terminal that is used by the courier and recipients to deposit and collect parcels. The 

SPs are typically located on public premises, such as at gas stations or public transit 

stations. The increasing popularity of APLSs is creating opportunities for more efficient 

distribution models for small parcels. 

In this paper, we introduce a logistic model for parcel distribution that is well 

suited for APLSs and present effective methods for solving it. An extensive numerical 

study is conducted to evaluate these methods and demonstrate the benefits of the 

proposed logistic model compared to traditional methods. 

In traditional delivery models, each recipient specifies a single location at which 

to receive his or her parcel. However, when an APLS is used, many recipients may have 

no strong preference among several delivery locations; for example, a recipient may 

have equally convenient access to three different SPs along his or her commuting route 

from work to home if the parcel is delivered during the day or to another SP at walking 

distance from his or her home if the parcel is delivered in the evening. If some recipients 

are flexible and willing to provide the sender with more than one possible delivery 

location, then the delivery task can be completed at lower cost and within a shorter 

time. 

The goal of this study is to formulate and solve a parcel delivery model for 

determining the number of vehicles and their routes and assigning parcels to vehicles 

and destinations. We refer to this model as the flexible parcel delivery (FPD) problem, 

which is defined as follows. We are given a set of parcels, initially located at a central 

facility (depot), and a set of SPs, each with a specific capacity. Each parcel is 

characterized by a set of possible destination SPs, a size and a penalty for failing to 

deliver it during the next shift. Such penalties can be updated over time to represent the 

urgency of each parcel. The parcels are distributed using an unlimited fleet of vehicles 

with identical capacity. The travel time and cost of travel between each pair of locations 

are given. In addition, there is a fixed handling time per parcel, which represents the 

time that is required to unload a parcel from a vehicle at an SP. A solution to the 

problem consists of a set of tours for the vehicles that visit each SP at most once, and a 

set of assignments of parcels to vehicles and destination SPs. A feasible solution must 

satisfy the capacity constraints of the vehicles and SPs as well as a shift length 

constraint that considers both the travel and handling times. The objective is to 

minimize the total travel cost, the total vehicle cost, and the sum of the penalties due to 

undelivered parcels. 

In this paper, we focus on an extension of the problem in which the SPs and 

vehicles are divided into lockers and cells, respectively, of specific sizes. Each locker 

or cell may contain at most one parcel at a time. The solution specifies a set of 
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assignments of parcels to lockers and cells, in which each parcel can be assigned only 

to a locker and cell of compatible size (i.e., one that is at least as large as the parcel). 

The rest of the paper is organized as follows. In Section 2 we review the relevant 

literature and identify the gap closed by the current study. In Section 3, a detailed 

definition and mathematical formulation of the FPD problem are presented. In Section 

4, our solution methods for this problem are introduced. In Section 5, a numerical 

experiment conducted to test our solution methods is reported. It is shown that 

flexibility makes the delivery process more efficient. In Section 6, to strengthen our 

conclusions from Section 5, we demonstrate how our model can be used in a 

multiperiod, dynamic and stochastic setting by applying it in a rolling horizon scenario 

and allowing the users to redefine their sets of possible destinations if their parcels were 

not delivered during the current period (shift). In Section 7, some concluding remarks 

and directions for further research are presented. 

 

2 Literature review 
The FPD problem is a vehicle routing problem (VRP). Vehicle routing is a fundamental 

task for many private and public organizations. It is crucial for shipping goods in a cost-

effective manner and for local transport within a factory or warehouse building. 

Effective and efficient vehicle routing may also have economic and environmental 

effects: shorter routes for vehicles of higher capacity reduce pressure on the road 

infrastructure, improve traffic flow, and contribute to decreasing the negative 

externalities of transportation. 

VRPs involve optimizing routes for a fleet of vehicles that need to transport 

goods, passengers, etc. For extensive reviews and classification of VRPs, see Golden 

et al. (2008), Drexl (2012), and Toth and Vigo (2014). There are several VRP variants 

that share certain characteristics with the FPD problem. The classic variant has a single 

objective and is concerned only with minimizing the total cost or length of all routes 

when visiting all customers subject to vehicle capacity or route length constraints. This 

capacitated vehicle routing problem (CVRP) was first introduced by Dantzig and 

Ramser (1959). An overview of the CVRP can be found in Laporte et al. (2000). The 

addition of distance constraints to the CVRP yields the distance-constrained CVRP 

(DCVRP, Laporte et al., 1984). Constraints can be used to limit the distance, duration 

or cost of the routes. 

A scheduling-routing-loading model with customer capacity constraints was 

addressed by Reyes et al. (2007). These constraints are the basis of the customer 

capacity vehicle routing problem (CCVRP), and they limit the number of vehicles that 

can be at a given location at the same time. 

The multivehicle covering tour problem (m-CTP) introduced by Hachicha et al. 

(2000) is defined by a set of locations 𝑉 that the vehicles can visit and a set of locations 

𝑊 that should be served. Each 𝑤 ∈ 𝑊 is associated with one or more 𝑣 ∈ 𝑉, and the 

goal is to find a set of 𝑚 minimum-length tours through elements of 𝑉 that cover all 

elements of 𝑊. The flexibility aspect of the FPD problem is captured by this model 

when 𝑉 is the set of SPs and 𝑊 is the set of parcels that should be “covered”. 

Ghiani and Improta (2000) introduced the generalized VRP (GVRP), in which a 

fleet of vehicles serves a set of customers who are divided into clusters. Each cluster is 

visited exactly once by only one of the vehicles. A customer can be served when a 

vehicle visits any of the customers in that customer’s cluster. The vehicles are 

capacitated, and each cluster has its own demand. The objective is to find a minimum-

distance set of routes that allows all customers to be served. In this model, the 
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destination flexibility stems from the fact that the planner needs to choose only one 

location in each cluster to visit. Biesinger et al. (2018) introduced a genetic algorithm 

combined with a solution archive for solving the generalized VRP with stochastic 

demand at the customers. Miranda et al. (2018) extended the generalized VRP to a bi-

objective problem that also considers the costs of delivering the goods to their 

destinations within each cluster. Their model considered only a single vehicle. 

Another variation is the vehicle routing problem with profits (VRPP), which 

shares components of the objective function with our FPD problem. Unlike the CVRP, 

the VRPP is characterized by a profit value associated with each customer; the objective 

is to maximize the total net profit from the visited customers after travel costs (Archetti 

et al., 2014). Equivalently, it is possible to associate a penalty with each customer who 

is not visited and to formulate the objective as the minimization of the sum of the travel 

costs and penalties. 

Most VRPP studies have examined variations of the single-vehicle case, also 

known as the traveling salesman problem (TSP) with profits (Feillet et al., 2005), the 

orienteering problem (Golden et al., 1987; Vansteen et al., 2011), the selective TSP 

(Laporte and Martello, 1990) and the prize-collecting TSP (Balas, 1989). 

The team orienteering problem (TOP) is a well-studied version of the 

multivehicle generalization of the VRPP. The TOP includes a set of geographically 

scattered customers, each assigned a profit value. Each vehicle must visit a subset of 

customers within a given time limit. The objective is to maximize the collected profit 

while satisfying the time limit for each vehicle  (Archetti et al., 2007). 

In the well-studied traveling purchaser problem (TPP), given a list specifying the 

products and quantities required, a purchaser must find a purchasing plan that exactly 

satisfies the product demand by visiting a subset of suppliers on a unique tour. The 

model contains flexibility in the selection of the supplier for each product. The objective 

of the purchaser is to minimize the combined travel and purchase costs. The problem 

combines supplier selection, route construction and product purchase planning. This 

problem dates back to the 1960s, and more recent multivehicle variations also exist. 

For a review of the state of the art in TPP research, see Manerba et al. (2017). 

Raviv et al. (2013) modeled a VRP variant in a bike-sharing system - the static 

bicycle repositioning problem (SBRP). In their model, they included the time needed 

to load and unload bicycles on and off vehicles (handling time), vehicle capacity, station 

capacity, and route time limits. This problem is a type of inventory routing problem in 

which the decisions are which customers to visit and when as well as how many goods 

to deliver to each. The goods are not identified by specific destinations. See Moin and 

Salhi (2007) for an overview. 

Reyes et al. (2017) studied the vehicle routing problem with roaming delivery 

locations (VRPRDL). This problem is motivated by a new technology that enables the 

delivery of parcels to the trunk of the recipient’s car. The location of the car varies over 

time, with known, nonoverlapping time windows for each location. The goal is to 

deliver all parcels to the correct cars. 

Lang et al. (2014) considered a variation of the VRP with time windows in which 

the goal is to minimize the total fuel consumption, which is affected by the vehicle load. 

There are several alternative stop points for each customer; this scenario is motivated 

by the routing of a fleet of couriers in an urban environment. Each courier can decide 

to stop his or her vehicle either on the same side of the street as the customer or on the 

opposite side. The time window for each possible stop point is adjusted to reflect the 

walking time from the stop point to the customer location. 
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The FPD problem is different from all variants of the VRP that have been studied 

to date in that each item to be delivered is identified and characterized by a set of 

optional destinations (SPs) and a penalty for not delivering it at all. In a feasible 

solution, not all items must be delivered, and an item may not be delivered even if its 

destination is visited. More generally, vehicle routing models that combine the flexible 

delivery of unique goods, time constraints, handling time, vehicle loading 

considerations, and customer capacity constraints have not been studied. Table 1 lists 

some characteristics of the VRP variants discussed above as well as the FPD problem. 

Indeed, the FPD problem stands out as a unique and rich vehicle routing model. The 

first four characteristics considered in the table are the existence of vehicle capacity 

constraints, route length constraints, customer capacity constraints and handling times. 

The next column concerns the identifiability of particular items. Items may be identified 

by their locations, urgency, dimensions and time windows. Next, we characterize the 

destination flexibility if applicable and then list the characteristics of the objective 

function. 

 

 
Table 1. Comparison of VRP variants 

 
Variant Source Vehicle 

capacity 

Route 

length  

Customer 

capacity 

Handling 

time 

Items 

identified by 

Destination 

flexibility  
Objective 

function 

CVRP Dantzig 

and 

Ramser 

(1959) 

Limited          Distance,  

fleet size 

CCVRP Reyes, et 

al. 

(2007) 

    Limited      Distance 

DCVRP Laporte 

et al. 

(1984) 

Limited Yes        Distance 

m-CTP Hachicha 

et al. 

(2000) 

 Yes   Location Flexible 

locations 

but all 

items are 

delivered 

Distance 

TOP Archetti, 

et al. 

(2007) 

  Yes        Distance, 

penalty 

TPP Reviewed 

by 

Manerba 

et al. 

(2017) 

In 

multivehi

cle 
versions 

 In some 

versions 

  Flexible 

locations 

but all 

products 

are 

purchased 

Distance, 

prices 
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SBRP Raviv, 

Tzur & 

Forma 

(2013) 

Limited Yes Limited Depends 

on the 

delivered 

quantity 

  Distance, 

penalty 

VRPRDL Reyes 

(2017) 

Limited    
Location 

Time 

window 

Yes, for 

different 

time 

windows 

Distance 

GVRP Ghiani 

and 

Improta 

(2000) 

Limited    
 One 

location in 

each cluster 

Distance 

VRP- alt. 

stop 

points 

Lang et 

al. 

(2014) 

Limited  At the 

alternative 

points only 

Depends 

on the stop 

point 

 Only 

nearby 

alternatives 

Fuel 

FPD This 

study 

Limited 

per 

product 

size 

Yes Limited per 

product size 

Depends 

on the 

delivered 

quantity 

Location 

Urgency 

Dimension 

Several 

alternatives 

per item 

and items 

can be 

skipped  

Distance, 

penalty, fleet 

size 

 

3 Problem definition and formulation 
 

In this section, we present a formal definition and a mixed-integer linear programming 

(MILP) formulation of the FPD problem. The context here is an optimal planning 

problem for a single shift with the possibility of postponing the delivery of some parcels 

to subsequent shifts. The application of the static single-shift model presented here in a 

dynamic multishift environment using a rolling horizon framework will be discussed in 

Section 6. The FPD problem is defined by the following inputs: 

A set of SPs, where each SP is characterized by a set of available lockers of 

different sizes. Each locker may contain at most one parcel at a time. The number of 

different locker sizes in the system is assumed to be small (e.g., three or four). The 

assortment of available lockers defines the effective capacity of the SP. The actual 

capacity of the SP may be larger, but some of the lockers may be occupied by parcels 

that were dropped off in previous shifts and have not yet been collected by their 

recipients. 

A matrix of the travel times between the SPs and between the depot and the 

SPs, where the travel cost per time is also given. 

A fleet with an unlimited number of identical vehicles. The cost of operating each 

vehicle during a shift is given. Each vehicle is divided into cells of different sizes. These 

sizes are assumed to be identical to the sizes of the lockers in the SPs. Each cell may 

contain at most one parcel at a time. The assortment of cells defines the capacity of the 

vehicle. 

A set of parcels, where each parcel is associated with a set of SPs to which it can 

be delivered, a penalty for failing to deliver that parcel and a set of locker/cell sizes 

with which it is compatible. The degree of flexibility is defined by the number of 

different potential destinations for the parcels. The penalty represents the urgency class 
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and possibly the seniority of the parcel in the system. Thus, in a multishift setting, the 

operator may raise the penalty for a parcel after each shift in which that parcel remains 

undelivered. 

A fixed time associated with each operation of unloading a parcel from a vehicle 

and depositing it in its locker. Our model determines which parcels should be loaded 

onto each vehicle, but it is assumed that the vehicle loading operation commences 

before the beginning of the planning horizon. 

The length of the shift that constitutes the planning horizon. All utilized 

vehicles depart from the depot at the beginning of the planning horizon and must 

return by the end of this period. 

A solution to the problem consists of a set of routes traveled by the vehicles, the 

identities of the parcels loaded on each vehicle, their destination SPs and the sizes of 

the cells and lockers to which they are assigned. A feasible solution satisfies the shift 

length constraint and the capacity constraints of the vehicles and SPs. The objective is 

to minimize the sum of the following three cost components: the total travel cost for 

all vehicles, the fixed cost for each utilized vehicle, and the total penalty for all 

parcels that are not delivered. 

Our model is based on the following simplifying assumptions: 

1. Each SP can be visited only once per shift by a single vehicle, i.e., there is no 

“split delivery”. This assumption is typically not very restrictive in our 

application since the number of parcels that should be delivered to each SP is 

small compared to the vehicle capacity. 

2. The availability of lockers at the SPs is known before the beginning of the 

planning horizon. The generated plan ignores the possibility that parcels may 

be collected from the SPs during the shift. 

3. The sizes of the lockers/cells are nested, i.e., a larger locker can contain any 

parcel that can also be contained in a smaller one. This assumption is well 

aligned with the automated parcel locker equipment that is available on the 

market. 

 

Next, we introduce the following notation to define our MILP model: 

 

Sets  

𝑺  SPs; 𝑆 = {1, … , 𝑛}.  

𝑺𝟎 Locations, including the depot and SPs; 𝑆0 = 𝑆 ∪ {0}. 

𝑸 Parcels to be potentially delivered; 𝑄 = {1, … , 𝑝}. 

𝑺𝒒 SPs to which parcel 𝑞 ∈ 𝑄 can be delivered; 𝑆𝑞 ⊂ 𝑆. 

𝑱 Indices of the cell/locker sizes (types), in decreasing order of size. 

  

Parameters 

𝑻  Maximum route duration (the length of the planning horizon). 

𝑽𝒊𝒌 Total driving time from SP 𝑖 to SP 𝑘 (travel time matrix). 

𝑪𝒋 Number of cells of size 𝑗 in each vehicle. 

𝑩𝒊,𝒋 Number of available lockers of size 𝑗 at SP 𝑖. 



8 
 

𝑷𝒒 Penalty for not delivering parcel 𝑞. 

𝑫𝒒 Minimal size of a cell/locker in which parcel 𝑞 can fit. 

𝜶 Travel cost per unit of driving time. 

𝜷 Unloading time for a parcel. 

𝜸 Fixed vehicle cost. 

 

Decision variables 

𝒙𝒊𝒌 Binary variable; equals 1 if a vehicle travels from SP 𝑖 to SP 𝑘 for all 𝑖, 𝑘 ∈ 𝑆. 

𝒚𝒒𝒊𝒌 Binary variable; equals 1 if parcel 𝑞 travels on a vehicle from SP 𝑖 to SP 𝑘 for all 𝑞 ∈

𝑄 and 𝑖, 𝑘 ∈ 𝑆 

𝒛𝒒𝒊 Binary variable; equals 1 if parcel 𝑞 is delivered to SP 𝑖 for all 𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞. 

𝒖𝒊 Arrival time of a vehicle at location 𝑖 (𝑢0 is assumed to be 0). 

 

 

min 𝛼 ∑ ∑ 𝑉𝑖𝑘𝑥𝑖𝑘

𝑘∈𝑆0𝑖∈𝑆0

+ ∑ (1 − ∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞

)

𝑞

𝑃𝑞 + γ ∙ ∑ 𝑥0𝑘

𝑘∈𝑆

 (1) 

s.t.  
𝑦𝑞𝑖𝑘 ≤ 𝑥𝑖𝑘      ∀𝑞 ∈ 𝑄, 𝑖, 𝑘 ∈ 𝑆0 (2) 

∑ 𝑦𝑞0𝑖

𝑞:𝐷𝑞≤𝑗

≤ 𝑥0𝑖 ∙ ∑ 𝐶𝑗′

𝑗

𝑗′=1

       ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝑆 
 

(3) 

 

∑ 𝑧𝑞𝑖

𝑞:𝐷𝑞≤𝑗∧𝑖∈𝑆𝑞

≤ ∑ 𝐵𝑖𝑗′

𝑗

𝑗′=1

        ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐽 
 

(4) 

 

∑ 𝑥𝑖𝑘

𝑘∈𝑆0

≤ 1    ∀ 𝑖 ∈ 𝑆 
 

(5) 

 

∑ 𝑥𝑖𝑘

𝑘∈𝑆0

=  ∑ 𝑥𝑘𝑖

𝑘∈𝑆0

    ∀ 𝑖 ∈ 𝑆0 
 

(6) 

 

∑ 𝑦𝑞𝑖𝑘

𝑖∈𝑆0

= ∑ 𝑦𝑞𝑘𝑖

𝑖∈𝑆0

  ∀𝑞 ∈ 𝑄, 𝑘 ∈ 𝑆 ∖ 𝑆𝑞 (7) 

 

∑ 𝑦𝑞𝑖𝑘

𝑖∈𝑆0

= ∑ 𝑦𝑞𝑘𝑖

𝑖∈𝑆0

+ 𝑧𝑞𝑘   ∀𝑞 ∈ 𝑄, 𝑘 ∈ 𝑆𝑞 (8) 

 

𝑢𝑘 ≥ 𝑢𝑖 + 𝛽 ∑ 𝑧𝑞𝑖

𝑞:𝑖∈𝑆𝑞

+ 𝑉𝑖𝑘 − (1 − 𝑥𝑖𝑘)𝑇    ∀𝑖 ∈ 𝑆0, 𝑘 ∈ 𝑆 (9) 
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𝑢0 = 0 
 

(10) 
 

𝑢𝑘 +  𝛽 ∑ 𝑧𝑞𝑘

𝑞:𝑘∈𝑆𝑞

+ 𝑉𝑘0 ≤ 𝑇  ∀𝑘 ∈ 𝑆 (11) 

 

∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞

≤ 1       ∀𝑞 ∈ 𝑄 (12) 

 

∑ 𝑦𝑞0𝑘

𝑘∈𝑆

≤ ∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞

       ∀𝑞 ∈ 𝑄 
(13) 

 

𝑥𝑖𝑘 ∈ {0,1}     𝑖, 𝑘 ∈ 𝑆0 
 

(14) 
 

𝑦𝑞𝑖𝑘 ∈ {0,1}    ∀𝑞 ∈ 𝑄, 𝑖, 𝑘 ∈ 𝑆0 
 

(15) 
 

𝑧𝑞𝑖 ∈ {0,1} ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞 
 

(16) 

 

𝑢𝑖 ≥ 0     ∀ 𝑖 ∈ 𝑆0 
 

(17) 
 
The model can be described as follows: 

(1) The objective function minimizes the sum of the three cost components: the 

travel costs for the vehicles, the penalties for parcels not delivered, and a fixed 

cost for each vehicle used. The first and third components are jointly referred 

to as the transportation cost. 

(2) The decision variables 𝑥 and 𝑦 are associated with each other. For each parcel 

carried on a vehicle in a section (between two locations), the corresponding 

section must be a part of a vehicle route. 

(3) The total number of parcels of a certain size or larger that are sent from the 

depot to a specific SP must be at most equal to the total capacity of the vehicle 

for parcels of that size or larger. This inequality guarantees that each vehicle 

has sufficient capacity for the parcels of each size that it is to deliver, 

independent of the assignment of parcels to particular cells. 

(4) The total number of parcels of size 𝑗 or larger that are delivered to SP 𝑖 must 

be no greater than the number of available lockers of this size or larger at SP 

𝑖. This inequality guarantees that each SP has sufficient available capacity for 

the parcels of each size that are to be delivered to it, independent of the 

assignment of parcels to particular lockers. 

(5) At most one vehicle may depart from any SP since we assume that split 

deliveries are not allowed. 

(6) The number of vehicles that arrive at a location is equal to the number of 

vehicles that depart from it (vehicle flow conservation equation). Note that 

according to (5), at each SP, this number is either zero or one. 

(7) Each parcel that travels to an SP that is not one of its possible destinations 

must leave that SP. 

(8) Each parcel that travels to one of its possible destination SPs either leaves that 

SP or is delivered to it. Together, (7) and (8) stipulate the conservation of 

parcel flow. 
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(9) If a vehicle travels from SP 𝑖 to SP 𝑘, then its arrival time at SP 𝑘 is at least its 

arrival time at SP 𝑖 (or 0) plus the time required to unload all parcels delivered 

to SP 𝑖 and the travel time from SP 𝑖 to SP 𝑘. This inequality eliminates 

subtours that do not contain the depot. 

(10) The arrival time at the depot is zero. 

(11) The total time for each vehicle’s tour is limited to at most 𝑇. 

(12) Each parcel can be delivered to at most one SP. 

(13) Only delivered parcels can leave the depot, each on at most one vehicle. 

(14)-(17) The domains of the decision variables are defined. 

 

This problem is intractable because it is a generalization of various NP-hard 

problems, such as the CVRP. Obtaining a reasonably approximated solution to (1)-(17) 

using a commercial solver is not practical for most real-life instances, as we 

demonstrate in Section 5. In the next section, we present heuristic algorithms designed 

to generate good solutions for large problem instances. 

4 Methodology 
In this section, we present two mathematical construction heuristics for solving the FPD 

problem: a savings heuristic based on the idea proposed by Clarke and Wright (1964) 

and a heuristic based on the petal heuristic of Foster and Ryan (1976) and Ryan et al. 

(1993). In both cases, the subproblems are solved to optimality using a commercial 

MILP solver. In addition, we design a tabu search heuristic that can be used to improve 

the solutions obtained with these construction heuristics. Via the numerical experiment 

described in Section 5, we will show that these heuristics reach good solutions in a 

relatively short time. 

4.1 Savings heuristic 
The savings heuristic for the classic CVRP was introduced by Clarke and Wright 

(1964). Since that time, this heuristic has been adapted to many VRP variants. For 

examples of its application, see Toth and Vigo (2014), Chapters 4, 8, and 12. The 

fundamental idea of the algorithm is to repeatedly unify existing routes to reduce the 

total cost. The algorithm starts with a set of simple routes – tours consisting of the depot 

and one customer. In each iteration, the algorithm checks for the potential total cost 

savings that can be obtained by unifying each pair of routes. The pair that yields the 

feasible tour with the largest savings is unified, and the algorithm is repeated until no 

feasible unification can yield a positive savings. Altinkemer and Gavish (1991) 

introduced an improvement of the savings heuristic by optimizing each candidate pair 

of routes for unification by solving the TSP. 

In the FPD problem, the calculation of the savings obtained by unifying two 

routes should consider all three cost components, i.e., the travel times, penalties for 

undelivered parcels and vehicle costs. The value of each potential unification is 

evaluated in two stages: the routes are determined first, followed by the delivery plan. 

In the first stage of evaluating a candidate solution, the unification of two routes 

reduces the vehicle cost component by the fixed cost of a single vehicle and the 

associated travel cost. The travel cost savings value is calculated as the difference 

between the sum of the travel times of the two routes and the travel time of the unified 

route, as calculated by solving the TSP using CPLEX. Since the routes are rather short, 
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these subproblems can be solved quickly. If the travel time of the unified route exceeds 

the time limit T, then the unified route is infeasible. 

In the second stage of the evaluation, the effect of route unification on the total 

penalty is obtained by comparing the total penalty for the current solution with the 

optimal penalty that can be obtained with the new set of routes. Note that due to the 

flexibility of the parcel destinations, route unification may affect the delivery of parcels 

to any SP in the system, not only those that are visited by the unified route. Given the 

set of routes (for each candidate unification), the algorithm finds the optimal assignment 

of parcels to vehicles and SPs by solving a streamlined version of the MILP problem 

defined by (1)-(17), in which the vehicle route variables are fixed. The objective 

function serves to minimize the total penalty for the parcels that are not delivered on 

these routes. We refer to this subproblem as the loading problem. Note that route 

unification can only increase the total penalty since the capacity and route length 

constraints are tightened, while the two other cost components are reduced. 

The loading problem for a given set of routes is formulated using some additional 

notation as follows: 𝑅 denotes the set of the routes under consideration, the set 𝐺𝑟 

consists of all SPs visited by a route 𝑟 ∈ 𝑅, and 𝑇𝑆𝑃(𝐺𝑟) is the shortest route that visits 

all of the SPs in 𝐺𝑟 plus the depot. Let 𝑈 = ⋃ 𝐺𝑟
|𝑅|
𝑟=1  be the set of all visited SPs, and let 

T𝑟 = T − TSP(G𝑟) be the remaining time available for unloading parcels on route 𝑟. 

Next, we redefine the decision variables as shown below. 

 

Decision variables 

𝒚𝒒,𝒓  Binary variable; equals 1 if parcel 𝑞 is assigned to a vehicle that is 

traveling on route 𝑟. This variable is defined for each tuple (𝑞 ∈ 𝑄, 𝑟 ∈

𝑅: 𝑆𝑞 ∩ 𝐺𝑟 ≠ ∅). 

𝒛𝒒,𝒊 Binary variable; equals 1 if parcel 𝑞 is delivered to SP 𝑖. This variable is 

defined for each tuple (𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞 ∩ 𝑈). 

The remaining notation is the same as that used in (1)-(17). 

 

min ∑ 𝑃𝑞 (1 − ∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞∩𝑈

)

𝑞∈𝑄

 

 

 

 

 

 

(18) 

s.t.   

∑ 𝑦𝑞𝑟

𝑞:𝐷𝑞≤𝑗⋀(𝑆𝑞∩𝐺𝑟≠∅)

≤ ∑ 𝐶𝑗′

𝑗

𝑗′=1

        

 

∀𝑗 ∈ 𝐽; 𝑟 ∈ 𝑅 (19) 

∑ 𝑧𝑞𝑖

𝑞:𝐷𝑞≤𝑗∧𝑖∈𝑆𝑞

≤ ∑ 𝐵𝑖𝑗′

𝑗

𝑗′=1

         ∀𝑖 ∈ 𝑈, 𝑗 ∈ 𝐽 (20) 

𝛽 ∑ 𝑦𝑞𝑟

𝑞:(𝑆𝑞∩𝐺𝑟≠∅)

≤ 𝑇𝑟       ∀𝑟 ∈ 𝑅 (21) 
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∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞∩𝐺𝑟

≤ 𝑦𝑞𝑟       ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅: 𝑆𝑞 ∩ 𝐺𝑟 ≠ ∅ (22) 

∑ 𝑧𝑞𝑖

𝑖∈𝑆𝑞∩𝑈

≤ 1 ∀𝑞 ∈ 𝑄: 𝑆𝑞 ∩ 𝑈 ≠ ∅ (23) 

∑ 𝑦𝑞𝑟

𝑟:(𝑆𝑞∩𝐺𝑟≠∅)

≤ 1 ∀𝑞 ∈ 𝑄: 𝑆𝑞 ∩ 𝑈 ≠ ∅ (24) 

𝑦𝑞𝑟 ∈ {0,1} ∀𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅: 𝑆𝑞 ∩ 𝐺𝑟 ≠ ∅ (25) 

𝑧𝑞𝑖 ∈ {0,1} ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞 ∩ 𝑈 (26) 

The objective function (18) minimizes the total penalty for all parcels that are not 

delivered along the fixed routes. Constraints (19) and (20) are the capacity constraints 

for the vehicles and SPs, similar to (3) and (4). Constraints (21) limit the time available 

for unloading parcels along each route. Constraints (22) state that if a parcel is delivered 

to an SP on a given route, then it is carried by the vehicle that serves that route. 

Constraints (23) and (24) state that each parcel can be delivered to only a single SP via 

only one route. Constraints (25) and (26) define the domains of the decision variables. 

Since the savings calculation for each pair of existing routes involves solving two 

optimization problems (the TSP and the loading problem), we have devised a method 

that allows the calculations for many dominated pairs, i.e., pairs whose unification 

cannot yield the largest savings in the current iteration, to be skipped. 

Recall that each unification of two routes yields some savings in terms of the 

vehicle and travel costs and some additional cost due to the increased penalty. We refer 

to the former as the transportation savings and the latter as the added penalty for each 

pair of routes that can be unified. The net transportation savings after the added penalty 

is called the total savings for a pair. 

While the savings heuristic runs, we store a list, L, of feasible route pairs along 

with their potential transportation savings. In each iteration of the savings heuristic, the 

procedure loops through L in nonascending order of the transportation savings. For each 

route pair with a transportation savings greater than the best total savings encountered 

so far, we calculate the added penalty by solving the loading problem. If the total 

savings value is greater than the best total savings found so far, we store this pair as the 

best candidate for unification and update the value of the best total savings found. Once 

we encounter a pair with smaller transportation savings than the best total savings found 

so far, we exit the loop. Note that all remaining pairs in the sorted list will have smaller 

total savings since their transportation savings are smaller even without considering the 

added penalty. The best route pair is unified. The list 𝐿 is updated by removing each 

pair that contains a member of the unified pair, and new pairs that contain the newly 

created route are added. The transportation savings of the new pairs are calculated by 

solving TSPs, and the savings heuristic proceeds to the next iteration. In Pseudocode 1, 

we present the details of a single iteration of the savings heuristic. 

 

Pseudocode 1 – Select the best pair of routes for unification in a single iteration: 
 
L = list of feasible pairs of routes in descending order of transportation savings 
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BestSavings = 0 
For each pair in L 

If pair.transportationSavings >BestSavings 
newLoadingCost = optimal solution to the loading problem with the unified pair 
CostSavings = currentLoadingCost –newLoadingCost+ pair.transportationSavings 
If CostSavings > BestSavings 

BestSavings = CostSavings 
 bestPair = pair 
   bestLoading = newLoadingCost 
     Else  
 
break 
remove bestPair from L 
Insert into L new pairs that contain the unified pair and each other route in L 
Calculate the travel cost savings values for the new unified routes (by solving TSP problems) 
currentLoadingCost = bestLoading 

 

To reduce the time needed to solve the loading problems in each iteration, we add 

a constraint to the model that bounds the value of the objective function such that the 

total savings cannot be less than the best savings found so far in this iteration. In many 

cases, this results in an infeasible loading problem, and the solver terminates faster. 

After the savings heuristic terminates, the algorithm checks the profitability of 

each of the obtained routes. Routes for which the total penalty for the parcels delivered 

on those routes is smaller than the travel and vehicle costs are not profitable. Using an 

iterative procedure, we select the worst of the nonprofitable routes, remove it from the 

solution, and re-solve the loading problem with the remaining routes. This process is 

repeated until all routes are profitable. Note that the removal of a nonprofitable route in 

one iteration may cause other nonprofitable routes to become profitable ones in the new 

solution to the loading problem. Therefore, we remove the nonprofitable routes one by 

one. 

4.2 Petal heuristic 
The petal heuristic for the CVRP was introduced by Foster and Ryan (1976) and was 

improved by Ryan et al. (1993). In the first step of the petal heuristic, a TSP solution 

for all customers (but not the depot) is found using either some heuristic or an exact 

method. This TSP solution is referred to as the grand tour. In the second step, petal 

routes are created. The petals are contiguous subsequences of customers along the 

grand tour, and each consists of a set of customers that can be served by a single vehicle, 

meaning that their total demand does not exceed the vehicle capacity. A petal route is 

constructed by solving a TSP for the customers on a petal in addition to the depot. In 

the third step, a set of petal routes that covers all customers while minimizing the total 

cost is selected by solving a set-covering problem. Note that the number of considered 

routes is limited to quadratic order in the number of customers, whereas the number of 

all potential routes is exponential in the number of customers. Petal routes are attractive 

since they consist of sets of customers that are geographically close together. 

In this paper, we adapt the petal heuristic to the FPD problem. Only petal routes 

that satisfy the shift length constraint are considered, and heuristic domination criteria 

are used to further reduce the number of candidate routes. Note that if the triangle 

inequality holds, there is no need to solve the TSP for all possible petals. Once a tour 

that visits a subset of SPs is found to exceed the shift time limit, all subsets that contain 

it can be eliminated from consideration. We use CPLEX to find the optimal grand tour 

and to solve the TSPs for the petals. In the second step, we only create potential tours 

for the vehicles; we do not assign parcels to vehicles and SPs yet. 
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In an actual distance matrix obtained from geographic information systems (GIS), 

one may encounter some minor violations of the triangle inequality, due to some 

rounding errors and noise in the data collection process. In these cases, adding an SP to 

a route may result in shortening its travel time. Therefore, there may be some 

pathological cases in which an infeasible route, with a total travel time that is slightly 

larger than 𝑇, may be a subset of a feasible route that is slightly shorter than 𝑇. However, 

these routes are unlikely to be in the optimal solution since routes that exploit nearly all 

the planning horizon (𝑇) for travelling (leaving very short time for parcel unloading 

operations) are anyway unattractive for our petal heuristic.     

In the third step, we simultaneously select an optimal subset of the routes to be 

served and assign parcels to vehicles and SPs. That is, we produce a plan that minimizes 

the total vehicle, travel and penalty costs. Note that in our heuristic, not all SPs have to 

be covered. This problem is formulated as an MILP model, with the same notation used 

in the savings heuristic formulation defined in (18)-(26). However, the set of routes 𝑅 

now represents all of the candidate petal routes rather than a fixed set in each iteration 

of the savings heuristic. The meanings of 𝐺𝑟 and 𝑇𝑟 are also changed accordingly. The 

decision variables and the problem formulation, given by (27)-(37), are presented 

below. 

 

Decision variables 

𝒙𝒓 Binary variable; equals 1 if route 𝑟 is served by a vehicle. 

𝒚𝒒𝒓  Binary variable; equals 1 if parcel 𝑞 is assigned to a vehicle that is traveling 

on route 𝑟. This variable is defined for each tuple (𝑞𝜖𝑄, 𝑟𝜖𝑅𝑞). 

𝒛𝒒𝒊 Binary variable; equals 1 if parcel 𝑞 is delivered to SP 𝑖. This variable is 

defined for each tuple (𝑞𝜖𝑄, 𝑖𝜖𝑆𝑞). 

 

 

 

min  𝛼 ∑ 𝑇𝑟𝑥𝑟

𝑟∈𝑅

+ ∑ (1 − ∑ 𝑧𝑞𝑖

𝑖∈𝑆

) 𝑃𝑞

𝑞∈𝑄

+ 𝛾 ∑ 𝑥𝑟

𝑟∈𝑅

 

 

(27) 

s.t.   

∑ 𝑦𝑞𝑟

𝑞:(𝐷𝑞≤𝑗)∧(𝐺𝑟∩𝑆𝑞≠∅)

≤ 𝑥𝑟 ∑ 𝐶𝑗′

𝑗

𝑗′=1

 ∀𝑟 ∈ 𝑅, 𝑗 ∈ 𝐽 (28) 

∑ 𝑧𝑞𝑖

𝑞:(𝐷𝑞≤𝑗)∧(𝑖∈𝑆𝑞)

≤ ∑ 𝐵𝑖𝑗′

𝑗

𝑗′=1

 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐽 (29) 

𝑧𝑞𝑖 ≤ ∑ 𝑦𝑞𝑟

𝑟:𝑖∈𝐺𝑟

 ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞 (30) 

𝛽 ∙ ∑ 𝑦𝑞𝑟 ≤ 𝑥𝑟 ∙ 𝑇𝑟 

𝑞∈𝑄:𝐺𝑟∩𝑆𝑞≠∅

 ∀𝑟 ∈ 𝑅 (31) 



15 
 

∑ 𝑥𝑟 ≤ 1 

𝑟:𝑖∈𝐺𝑟

 ∀𝑖 ∈ 𝑆 (32) 

∑ 𝑦𝑞𝑟 ≤ 1

𝑟𝜖𝑅:𝐺𝑟∩𝑆𝑞≠∅

 ∀𝑞 ∈ 𝑄 (33) 

∑ 𝑧𝑞𝑖 ≤ 1

𝑖∈𝑆𝑞

 ∀𝑞 ∈ 𝑄 (34) 

𝑥𝑟 ∈ {0,1} ∀𝑟 ∈ 𝑅 (35) 

𝑦𝑞𝑟 ∈ {0,1} ∀𝑞𝜖𝑄, 𝑟𝜖𝑅: 𝐺𝑟 ∩ 𝑆𝑞 ≠ ∅ (36) 

𝑧𝑞𝑖 ∈ {0,1} ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑆𝑞 (37) 

  

The objective function (27) minimizes the sum of the three cost components: the 

travel cost, the penalty cost and the fixed cost per vehicle. Constraints (28) and (29) are 

the capacity constraints for the vehicles and SPs, formulated similarly to (3) and (4). 

Constraint (30) states that each parcel that is delivered to a specific SP will be delivered 

on a route that serves that SP. Constraint (31) limits the unloading time along each 

selected route. Constraint (32) states that each SP can be served by only one vehicle. 

Constraints (33) and (34) state that each parcel can be delivered via only one route to 

only a single SP. Constraints (35)-(37) define the domains of the decision variables. 

We apply a heuristic consideration to further reduce the number of considered 

routes. To this end, we define the profitability bound of a petal route as an upper bound 

on the penalty saved by delivering parcels to the route's SPs minus the travel and fixed 

vehicle costs. The upper bound on the saved penalty is calculated by greedily adding 

parcels to the route in nonincreasing order of their penalties while maintaining the shift 

length constraint. A petal route is a promising route if its profitability bound is positive 

and is no lower than the profitability bound of any shorter petal route contained in it. 

For example, if the profitability bound of the route constructed from petal {3,1} is 100 

and the profitability bound of the route constructed from {3,1,7} is 90, then the latter is 

not considered a promising route. Nonpromising routes can be excluded from the set 𝑅 

in (27)-(37), thereby significantly reducing the solution time for the model. Note that 

the longer a petal route is, the weaker its profitability bound is likely to be because it 

can be assigned more parcels that could be delivered on other routes in the solution. 

Therefore, shorter routes with higher profitability bounds are likely to be more 

profitable. 

 

4.3 Tabu search 
The tabu search framework is a framework for designing neighborhood search 

heuristics. To implement it, one needs to define an algorithm for constructing an initial 

solution, a neighborhood to be examined in each iteration, a tabu mechanism, and a 

stopping criterion. 

In our implementation, the initial solution is obtained through either the savings 

heuristic or the petal heuristic, as described above. In Section 5, we present the results 
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of applying a tabu search after each of these methods. The neighborhood is defined by 

the set of solutions that can be obtained by moving an SP from one route to another, 

swapping two SPs between two routes, inserting an unserved SP into a new or existing 

route, or turning a served SP into an unserved one. If one of these operations results in 

an empty route, that route is removed from the solution. 

Each entry in the tabu list forbids the insertion of an SP into a particular route and 

consists of the corresponding SP and route indices. A tabu list entry is created after each 

operation that removes an SP from a route. For example, after SP 𝑖 is moved from route 

𝑟 to route 𝑠, an entry (𝑖, 𝑟) is inserted into the tabu list. Any operation that tries to 

reinsert SP 𝑖 into route 𝑟 is disallowed until this tabu entry expires. The swapping 

operation removes two SPs from their routes and thus creates two new tabu list entries. 

For the purposes of the tabu mechanism, the set of unserved SPs is also treated as a 

route, meaning that an SP that was removed from the set of unserved routes cannot be 

reinserted into this set until the corresponding tabu entry expires. The length of the tabu 

list is a parameter of this algorithm. In our numerical experiment, we set this parameter 

equal to one quarter of the number of SPs. The algorithm is stopped after a predefined 

time (or a number of iterations), and the best-found solution is returned. 

Calculating the objective function for each neighbor requires the following steps: 1. 

reoptimizing the affected route(s) by solving the corresponding TSP(s) and 2. solving 

the loading problem for the entire system with the new routes. Each operation 

performed to generate a neighbor may result in higher (or lower) vehicle and travel 

costs as calculated in step 1, but step 2 may compensate for these costs by means of a 

lower (or higher) penalty. To reduce the calculation time, we use several algorithmic 

enhancements. First, we store the value of the optimal TSP solution obtained for each 

subset of SPs considered throughout the process in a hash table. Since the tabu search 

procedure requires the same TSPs to be solved multiple times, this caching mechanism 

eliminates most of the computational effort that is required for solving TSPs during the 

tabu search procedure. 

Second, we solve (or retrieve from the cache) the TSPs for the routes of all 

neighbors and sort the neighbors in ascending order of their transportation costs 

(vehicle and travel costs). The loading problems for the neighbors are then solved in 

this order. For each instance of the loading problem, we add a constraint that limits the 

total cost for the current neighbor to be lower than the cost for the best neighbor found 

so far. Since the neighbors are sorted in ascending order of their transportation costs, 

this additional constraint renders many instances of the loading problem infeasible, and 

this infeasibility is quickly detected by the solver. Thus, we reduce the number of 

computations required to solve each such instance to optimality. 

Third, we can save computational effort by skipping the process of solving loading 

problems for neighbors that satisfy the following conditions: 

1) The neighbor is obtained by removing one or two SPs from one or two 

unsaturated routes, i.e., routes where their travel time and capacity constraints 

are not binding. 

2) The transportation cost improvement relative to the current solution is lower 

than the best improvement found so far in the neighborhood. 

Neighbors that satisfy these conditions cannot be better than the best one found so 

far. Indeed, removing an SP from an unsaturated route cannot decrease the total penalty 

cost in the solution because if we could benefit from delivering additional parcels to 

any SPs on the original route, then the optimal loading solution would saturate the route. 

Therefore, improvement can stem only from a reduction in transportation cost. Note 

that the above argument holds regardless of the new route to which the SP is moved. 
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5 Numerical experiment 
In this section, we present the results of a numerical experiment conducted to compare 

the various solution methods for the FPD problem, and we examine the effect of the 

degree of flexibility on the delivery cost. 

 

5.1 Experimental settings 
All of the proposed heuristic methods were coded in Python 2.7 with CPLEX 12.7 as 

the MILP solver. The experiments were performed on a system with an Intel i7-6700 

4.0 GHz processor with 64 GB of RAM running 64-bit Windows 10. 

We generated 27 instances corresponding to nine system configurations (as 

defined by the numbers of SPs and parcels) and three degrees of flexibility, as specified 

below: 

 Number of SPs (depot included): 20, 40, and 50. 

 Average number of parcels per SP: 10, 20, and 30. For example, among the 50-SP 

instances, there were instances with 500, 1000 and 1500 parcels. 

 Level of flexibility: none, low, and high, as described below. 

In the nonflexible instances, each parcel had only one desired destination. In the 

low-flexibility instances, two-thirds of the parcels had only one destination each, while 

the rest each had two. In the high-flexibility instances, one-third of the parcels had one 

destination each, another third had two destinations each, and the rest each had three 

possible destinations. The destinations of the parcels were uniformly selected from the 

set of SPs. To create some similarity between the instances, the parcels were generated 

jointly for all three levels of flexibility; three possible destinations were generated for 

each instance, but only the first one or two destinations were used when applicable. 

In all instances, each parcel was characterized as being one of three sizes: large, 

medium, or small. The parcels were generated such that 20% were large, 40% were 

medium, and 40% were small. The late delivery penalties were drawn from a geometric 

distribution with a positive support and a parameter 𝑝 = 0.1 (i.e., mean 10). 

The total numbers of lockers in each SP were set to 16 large lockers, 32 medium 

lockers, and 32 small ones. The fraction of available lockers of each size was drawn 

from the triangle distribution 𝑇𝑅𝐼𝐴(0.1,0.5,0.75), and the result was rounded to the 

nearest integer. The numbers of large, medium and small truck cells were set to 32, 64 

and 64, respectively. The shift length constraint was set to 𝑇 = 480 minutes (eight 

hours). The travel cost per minute was set to 𝛼 = 1, and the cost for using each 

additional vehicle was set to 𝛾 = 60. The handling time was set to 𝛽 = 1 minute per 

parcel. 

The three sets of SP locations were randomly selected from a list of gas stations 

in central Israel. Note that automated lockers are commonly located in gas stations. The 

20- and 40-SP instances were subsets of the 50-SP instances. The depot was located in 

Airport City, in close proximity to the main distribution centers of several courier 

companies. The travel times in minutes between the locations were determined using 

Google Maps. We ensured that the data approximately satisfied the triangle inequality, 

except for some rare and minor violations due to rounding errors.   

The dataset used in our experiment is available in electronic appendix A. 

 



18 
 

5.2 Experimental results 
In this section, we compare the various solution methods presented in Section 4. We 

applied the complete MILP model of (1)-(17), the petal heuristic, and the savings 

heuristic to the 27 test instances. The solutions obtained with both the petal and savings 

heuristics were improved via tabu search. The time limit for the complete MILP model 

was set to three hours, which seems practical for a daily operation. Generation of the 

petals was completed in several minutes, and the solution time for the MILP 

formulation of (27)-(37) was limited to one hour. The savings heuristic terminated in 

no more than 32 minutes in the largest instances. Three hours were allocated for the 

tabu search method, from which the actual time taken in the construction phase (petal 

or savings) was subtracted. 

In Table 2, we report the results of this experiment. In the first column, we present 

the characteristics of the problem instance in the following format: number of 

SPs/number of parcels/degree of flexibility. Under “MILP obj.”, we present the best 

integer objective value of a solution to the complete model obtained after 3 hours (and, 

in parentheses, the result obtained with a 10-hour time limit for the smaller instances). 

Under “Petal”, we present the objective value obtained with the petal heuristic and the 

corresponding run time. Under “Petal+Tabu”, we present the objective value of the 

solution obtained by applying the tabu search method to the initial solution obtained 

with the petal heuristic and the corresponding relative improvement. The relative 

improvement is calculated by subtracting the objective value after the tabu search from 

the value before the tabu search and dividing by the value before the improvement. In 

the remaining columns, we present the same information for the savings heuristic. 

For each instance, the best obtained solution value is typeset in bold. For cases in 

which the MILP model of the petal method could not be solved to optimality within the 

one-hour time limit, the solution time is marked with an asterisk. 

Table 2 shows that even in a significantly shorter time, the petal method and the 

savings heuristic method each reached better solutions than those obtained with the 

complete MILP formulation in most of the instances that we tested. The advantage of 

the heuristic construction methods increases as the size of the instance grows. In fact, 

for all instances with at least 40 SPs and 800 parcels, the result obtained with the 

complete model was the trivial solution in which no parcels are delivered at all and all 

penalties are incurred. By contrast, both construction methods are scalable and can be 

used to obtain high-quality solutions in a short time. 

The tabu search method always improved the solution obtained with either 

construction heuristic within the time limit. The average relative improvement was 

4.2%. Thus, if time is available, it is always worth applying the tabu search method. 

For the smaller instances (with 20 SPs), we also ran the complete MILP model 

with a 10-hour time limit. Such a time budget is inappropriate for practical use during 

daily operations, but we were interested in finding optimal solutions to serve as a 

benchmark. However, none of these instances reached optimality, and the average and 

maximal optimality gaps were still 7.8% and 12.7%, respectively, after 10 hours. We 

noted some improvement in the obtained results, but in all instances in which the 

heuristic methods yielded better results than the complete MILP formulation under the 

three-hour time limit, the heuristic methods were still better or equal when 10 hours 

were allocated for the complete MILP solution. 

It is also apparent from Table 2 that adding flexibility to the destinations always 

reduces the total cost. When we allowed one-third of the customers to choose two 

destinations and one-third to choose three destinations (high flexibility), we obtained 

an average cost savings of 15.2% in all instances compared with the nonflexible case 
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and a cost savings of at least 12% in eight of the nine configurations. These 

improvements were calculated based on the best solution obtained with our solution 

methods. These results indicate that flexibility leads to substantially lower total 

transportation costs and penalties for undelivered parcels. Even low flexibility had a 

significant effect on the total objective value in all cases. In the low-flexibility case, the 

average cost savings due to flexibility was 9.3%. 

These benefits of flexibility are not particularly sensitive to our random selection 

of the destination SPs for each parcel. Indeed, in electronic appendix A, we present the 

results of a similar experiment, with the difference that the destinations of the flexible 

parcels were selected to be located only near each other. Even in this case, when high 

flexibility was allowed, there was an average cost reduction of 13.8%, and with low 

flexibility, the average reduction was 6.9%. These findings suggest that the benefits of 

flexibility cannot be explained merely by the opportunity to eliminate some regions 

from the routes and cover only certain regions. 

As seen from a comparison of the petal and savings heuristics, neither of them 

significantly outperforms the other in terms of the objective value of the obtained 

solution. Moreover, even after applying the tabu search method to improve the solutions 

obtained with these heuristics, we still cannot identify a dominating approach. 

However, note that in the larger instances, the MILP model of (27)-(37) could not be 

solved to optimality within an hour, while the savings heuristic always terminated 

quickly. In addition, the solution time of the petal method significantly increased with 

an increasing degree of flexibility, while the solution time of the savings heuristic was 

not very sensitive to the flexibility. Therefore, we believe that the savings heuristic is 

more scalable and better suited for instances with high flexibility than the petal method 

is. 

The number of tabu search iterations that could be performed within the time limit 

decreased from thousands in the smallest instances to only a few iterations in the largest 

instances. We observed that most of the run time for these instances was spent in 

solving numerous instances of the TSP and loading problem. The TSPs are solved 

repeatedly, shift after shift, for the same set of locations. Thus, similar routes are likely 

to recur. In Section 6, we show that caching the TSP solutions may eliminate most of 

this time and allow more iterations to be performed within the allotted time. 

 

Table 2: Results obtained within 3 hours 

 
  Petal Petal+Tabu Savings Savings+Tabu 

SP/parcels/flex 
MILP 

obj. 
Obj. 

Time 

(sec.) 
Obj. Improv. Obj.  

Time 

(sec.) 
Obj. Improv. 

20/200/none 
563 

(560) 
570 35 563 1.2% 572 25 563 1.6% 

20/200/low 
502 

(502) 
570 142 505 11.4% 572 22 505 11.7% 

20/200/high 
463 

(463) 
560 821 483 13.8% 572 23 483 15.6% 

20/400/none 
715 

(659) 
671 33 659 1.8% 667 25 659 1.2% 

20/400/low 
656 

(650) 
656 196 649 1.1% 656 25 649 1.1% 

20/400/high 
646 

(642) 
654 924 645 1.4% 650 27 642 1.2% 

20/600/none 
1125 

(896) 
900 43 885 1.7% 897 34 885 1.3% 

20/600/low 1112 778 246 767 1.4% 782 34 767 1.9% 
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(819) 

20/600/high 
897 

(768) 
755 879 747 1.1% 756 38 747 1.2% 

40/400/none 953 964 116 946 1.9% 1037 113 920 11.3% 

40/400/low 881 889 545 879 1.1% 945 115 901 4.7% 

40/400/high 826 814 3690* 806 1.0% 896 117 827 7.7% 

40/800/none 7811 1456 187 1376 5.5% 1521 158 1517 0.3% 

40/800/low 7811 1272 1032 1202 5.5% 1311 156 1305 0.5% 

40/800/high 7811 1208 3689* 1142 5.5% 1272 178 1141 10.3% 

40/1200/none 11862 2034 376 1960 3.6% 1978 278 1959 1.0% 

40/1200/low 11862 1731 1332 1673 3.4% 1862 318 1660 10.8% 

40/1200/high 11862 1769 3700* 1566 11.5% 1531 430 1509 1.4% 

50/500/none 5168 1229 749 1143 7.0% 1184 255 1168 1.4% 

50/500/low 5168 1186 3423 1128 4.9% 1121 269 1103 1.6% 

50/500/high 5168 1058 4236* 1006 4.9% 1084 236 1070 1.3% 

50/1000/none 10233 1677 844 1599 4.7% 1652 325 1611 2.5% 

50/1000/low 10233 1553 4235* 1491 4.0% 1518 352 1516 0.1% 

50/1000/high 10233 1626 4236* 1424 12.4% 1380 369 1350 2.2% 

50/1500/none 15237 2340 1074 2308 1.4% 2509 528 2322 7.5% 

50/1500/low 15237 2001 3781 1955 2.3% 2103 582 1959 6.8% 

50/1500/high 15237 1954 4244* 1868 4.4% 1830 727 1829 0.1% 

 

In Table 3, we present the components of the objective function for the best 

obtained solution for each instance. In the first column, we present the characteristics 

of the problem instance in the same format as in Table 2. The "Method" column presents 

the best solution method(s) for the instance. Under "Objective", we present the 

objective function value of the best solution for the instance. Under "Travel Time", we 

present the total length of the routes in the solution. Under "No. of Vehicles", we present 

the number of vehicles used in the solution. Recall that the cost of each vehicle used is 

60. Under "Penalty", we present the total penalty for undelivered parcels in the solution. 

Under "No. of Parcels Delivered", we present the number of parcels delivered in the 

solution. 

 

 

Table 3: Results obtained within 3 hours, divided into individual components 

SP/parcels/flex 

Method Objective Travel 

Time 

No. of 

Vehicles 

Penalty No. of 

Parcels 

Delivered 

20/200/none 

MILP 

563 

365 2 78 190 

Petal+Tabu 365 2 78 190 

Savings+Tabu 365 2 78 190 

20/200/low MILP 502 362 2 20 196 

20/200/high MILP 463 313 1 90 160 

20/400/none 
Petal+Tabu 

659 
477 3 2 398 

Savings+Tabu 477 3 2 398 

20/400/low 
Petal+Tabu 

649 
468 3 1 399 

Savings+Tabu 468 3 1 399 

20/400/high Savings+Tabu 642 462 3 0 400 

20/600/none 
Petal+Tabu 

885 
533 4 112 554 

Savings+Tabu 533 4 112 554 

20/600/low 
Petal+Tabu 

767 
499 4 28 579 

Savings+Tabu 499 4 28 579 

20/600/high 
Petal+Tabu 

747 
499 4 8 592 

Savings+Tabu 499 4 8 592 

40/400/none Savings+Tabu 920 593 3 147 376 

40/400/low Petal+Tabu 879 568 3 131 378 
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40/400/high Petal+Tabu 806 516 3 110 379 

40/800/none Petal+Tabu 1376 829 5 247 756 

40/800/low Petal+Tabu 1202 809 5 93 778 

40/800/high Savings+Tabu 1141 678 5 163 772 

40/1200/none Savings+Tabu 1959 919 7 620 1041 

40/1200/low Savings+Tabu 1660 925 7 315 1103 

40/1200/high Savings+Tabu 1509 850 7 239 1108 

50/500/none Petal+Tabu 1143 826 4 77 492 

50/500/low Savings+Tabu 1103 724 3 199 456 

50/500/high Petal+Tabu 1006 627 3 199 467 

50/1000/none Petal+Tabu 1599 994 7 185 963 

50/1000/low Petal+Tabu 1491 966 7 105 979 

50/1000/high Savings+Tabu 1350 814 6 176 937 

50/1500/none Petal+Tabu 2308 1118 9 650 1322 

50/1500/low Petal+Tabu 1955 1121 9 294 1396 

50/1500/high Savings+Tabu 1829 1012 9 277 1387 

 

It is apparent from Table 3 that our test instances span a wide variety of instance 

types, including instances in which all or almost all the parcels are delivered and the 

penalty is negligible as well as instances in which it is reasonable to avoid delivering 

up to 20% of the parcels and incur the corresponding penalties. 

6 Simulation study of multiperiod settings 
In practical settings, the last leg of parcel delivery service is conducted in several shifts 

per day, each lasting several hours. Parcels that are not delivered in the first shift after 

their arrival at the regional depot are typically delivered in one of the following shifts, 

with increased priority. For our flexible delivery model, we conceive of a scenario in 

which the recipient is notified by a text message once his or her parcel has arrived at 

the depot and is asked to select a set of possible SPs. The opportunity to select the 

possible destinations only a short time before the expected delivery enables the 

recipient to determine locations that are accessible to him or her at that particular time. 

If, due to capacity constraints, the parcel cannot be delivered during the first shift after 

its arrival, the recipient is given the opportunity to redefine the set of possible 

destinations. 

In this section, we present a simulation study that demonstrates how our single-

period deterministic routing model and solution methods can be used in such a dynamic 

and stochastic environment. Moreover, we show that our conclusion regarding the 

benefits of flexible delivery holds in such a realistic environment. 

In this simulation experiment, all of the lockers at the SPs were initially empty 

and available for parcels. Before the beginning of each shift, new parcels arrived at the 

depot in accordance with a random process. Each new parcel was initially assigned an 

identical penalty. After the parcels had arrived at the depot, the FPD problem was 

solved for all parcels currently at the depot subject to the availability of lockers in the 

system. Based on this solution, parcels were assigned to lockers at the SPs. Next, some 

parcels were collected from the SPs by their recipients in accordance with a random 

process. The penalty for each parcel that was not delivered (was left at the depot) was 

increased, and the set of possible destinations for each of these parcels was redefined 

before processing for the next shift was initiated. 

We simulated 40 shifts of eight hours each. The number of parcels that arrived 

before each shift was generated from a Poisson distribution with a mean of either 𝜆 =
400 or 𝜆 = 800. We used the 40-SP instances with the geographic locations described 

in the previous section. Each SP hosted 6 large, 12 medium and 12 small lockers for 
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the 𝜆 = 400 case, and these numbers were doubled for the 𝜆 = 800 case. The parcels 

were collected from the SPs by their recipients within zero, one, two, or three shifts 

after delivery, with probabilities of 0.2, 0.4, 0.2 and 0.2, respectively. We note that most 

delivery companies allow recipients a certain amount of time to pick up their parcels 

from an SP. If a parcel is not collected by its recipient within that time, it is collected 

by the shipping company and returned to the depot, and the sender is informed. The 

parameters of the arrival and collection processes were selected such that the capacity 

constraints of the SPs would be likely to be binding in some but not all periods and 

locations. The penalty for each parcel was initially set to 10 and was increased by 20% 

after each shift in which the parcel was not delivered. This increase represents the 

increasing urgency of parcels that are delayed. The remaining settings were exactly the 

same as in the previous section. 

At the beginning of each shift, the FPD problem was solved using the petal and 

tabu methods with a total time limit of three hours. Thus, the total run time for each 

simulation was 120 hours. In addition, each optimal TSP route that was found during 

this process was cached and was then retrieved if needed in future iterations or shifts. 

Moreover, in the petal method, it was necessary to generate the petals only in the first 

period. Starting from the second period, the petals could be retrieved from the cache, 

and only the MILP formulation of (27)-(37) needed to be solved. 

 We created four problem instances with arrival rates of 𝜆 = 400 and 𝜆 = 800. 

For each arrival rate, we tested the no- and high-flexibility cases, as described in Section 

4. Detailed results of the 40-shift simulation of each of the above instances are described 

in electronic appendix B. The service quality and cost measures calculated from these 

results are presented in Table 4. The table presents the percentages of parcels delivered 

during the shift following their arrival and within one shift (first- and second-shift 

delivery, respectively). The first-shift (second-shift) delivery measure is the ratio 

between the number of parcels that were delivered during the first (second) shift after 

their arrival and the total number of parcels that arrived in the system. For the 

calculation of the second-shift delivery measure, the last shift in the simulation was 

omitted. Next, the delivery proportions were calculated separately for parcels with one, 

two, and three destinations. The delivery proportion for N-dest. recipients is the ratio 

between the number of parcels with N possible destinations that were delivered and the 

total number of parcels with N possible destinations that were available for delivery 

(note that parcels that were not delivered during the shift after their arrival are counted 

more than once in the denominator). When flexibility is not allowed, this measure is 

relevant only for one destination. 

The delivery time is the difference between the delivery shift and the first shift 

after the arrival of the parcel. The average delivery time was calculated based on the 

delivery times of all parcels that arrived before the first occurrence of a parcel that was 

not delivered before the end of the simulation. To eliminate bias, all parcels that arrived 

during the same shift as this parcel or later were omitted. As a result, we omitted only 

two to six shifts in each of the simulation runs, which suggests that given enough time, 

each sent parcel is indeed delivered. 

Table 4 also presents the total travel time of the vehicles during the simulation 

and the number of vehicle working shifts, that is, the sum of the number of vehicles 

used in each shift over the simulation period. We calculated the average cost of 

delivering a parcel by dividing the transportation cost by the total number of parcels 

delivered during the simulation. This measure does not include the penalties for the 

parcels because these penalties represent the service level and not the delivery cost. 
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Table 4: General measures for the multiperiod settings 
Measure λ=400 λ=800 

No flexibility High flexibility No flexibility High flexibility 

First-shift delivery 84.1% 95.4% 91.2% 98.2% 

Second-shift delivery 95.3% 99.5% 98.3% 99.7% 

Delivery proportion 

for 3-dest. recipients 

- 99.5% - 99.98% 

Delivery proportion 

for 2-dest. recipients 

- 98% - 99.8% 

Delivery proportion 

for 1-dest. recipients 

80.2% 87% 90.1% 93.9% 

Average time to 

deliver a parcel 

(shifts) 

0.25 0.055 0.107 0.024 

Total travel time 32092 23801 41745 31769 

Number of vehicle 

working shifts 

133 121 245 224 

Average cost of 

delivering a parcel 

2.52 1.95 1.76 1.41 

 

 

 It is apparent from Table 4 that the introduction of flexibility enables significant 

improvement in the level of service while reducing the costs incurred by the operator. 

It can also be seen that with destination flexibility, the delivery proportion for 3-

destination recipients is almost 100%, while these proportions are somewhat lower for 

the 1- and 2-destination recipients. These findings indicate a personal incentive for 

recipients to show flexibility because it increases their chances of receiving their parcels 

earlier. Note that with the introduction of flexibility, even the nonflexible recipients 

enjoy an improvement in their service level, but the impact is much stronger for the 

flexible recipients. 

As expected, a comparison of the instances with low and high arrival rates reveals 

economies of scale due to the pooling effect of the SPs and opportunities for better 

consolidation of the parcels in the vehicles. However, the advantage provided by 

flexibility is still significant, even when the demand and the capacity of the lockers are 

both relatively high. 

In all instances, TSP caching saved some computation time, as seen from the fact 

that the number of TSPs solved in the last five shifts was decreased by 56.9% on 

average compared with the number solved in the first five shifts of the simulation. 

However, this did not translate into a significant improvement in the performance of 

the tabu search algorithm since the loading subproblems consumed most of the 

computation time in each iteration. 

There are several factors that may affect the time required for the system to reach 

a steady state if such a state existed. For example, since all lockers are available at the 

beginning of our simulated scenario, it may take some time until the locker capacity 

constraints start to be binding. Similarly, during the early shifts, there are few 

undelivered parcels at the depot. On the one hand, such parcels compete for the 

available resources, but on the other hand, they create more opportunities for 

consolidation. Moreover, our solution method may also take some time to warm up 

since the TSP cache is built gradually. To verify that our experimental results represent 

a stable system, we plotted the number of parcels in the depot and the first- and second-

shift delivery ratios for each shift. These plots are shown in Figures 1-3 for the instances 

with 𝜆 = 800. Similar figures are provided for the 𝜆 = 400 instances in electronic 

appendix B of this paper, and these figures lead to the same conclusions. For high-
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flexibility instances, the situation seems to stabilize immediately, while the nonflexible 

instances take some time to reach a steady state. During this warmup time, the first- and 

second-shift delivery ratios decrease; thus, the service quality presented in Table 4 for 

the nonflexible instances is biased upwards. This result only strengthens our argument 

in favor of introducing flexibility. 

 

 
Figure 1: Number of parcels waiting to be delivered at the beginning of each shift for a parcel 

arrival rate of 800 parcels/shift. 

 

 
  
Figure 2: First- and second-shift delivery percentages for a parcel arrival rate of 800 

parcels/shift and no flexibility. 
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Figure 3: First- and second-shift delivery percentages for a parcel arrival rate of 800 

parcels/shift and high flexibility. 

 

7 Conclusions 
In this paper, we introduced a logistic model for the delivery of parcels from a single 

depot to SPs in an APLS in which recipients can choose more than one possible 

destination SP. We showed that by exploiting this flexibility of the recipients, it is 

possible to reduce costs and shorten the delivery time significantly. 

We formulated the problem as an MILP model and devised effective heuristic 

solution methods for this model that perform well on large instances, even with high 

flexibility. Specifically, we introduced two construction heuristics based on the savings 

and petal methods for the CVRP and an improvement algorithm based on the tabu 

search framework, in which a very large neighborhood is searched with the aid of an 

MILP solver. 

Both the savings heuristic and the tabu search method are based on repeatedly 

solving many instances of the TSP and the loading problem. The TSP instances are 

relatively small, and we can use caching to reduce their solution times. Hence, most of 

the overall solution time is spent on solving instances of the loading problem. In our 

experiments, the linear programming relaxation of our formulation always resulted in 

an integer solution. However, we could not formally prove that the problem is solvable 

in polynomial time. This limitation raises the theoretical question of whether the 

loading problem is NP-hard. From a practical perspective, the development of a more 

efficient solution method for the loading problem will increase the number of tabu 

search iterations that can be performed within a specified time limit. 

Our model was formulated in the context of a single period with deterministic 

demand. However, through a simulation study, we showed that it could be adapted to a 

dynamic and stochastic environment. Our experimental results strengthen our 

conclusion that exploiting the recipients’ flexibility makes the delivery process more 

efficient for the system as a whole and probably also for the individual recipients 

themselves. Thus, there is a personal incentive for the recipients to show flexibility. 

Formulating the problem directly in a multiperiod setting would result in a much more 

intricate model, and it would not be suitable for settings in which the recipients may 

arbitrarily change their desired destinations if their parcels fail to be delivered during 
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the current shift. However, such a formulation could create better opportunities for 

efficient delivery. These will be interesting topics for future research. 
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