
LINEAR PROGRAMMING-BASED ALGORITHMS FOR THE MINIMUM

MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM

MICHAEL MASIN

IBM RESEARCH – HAIFA,

MOUNT CARMEL, HAIFA 31905, ISRAEL

AND

TAL RAVIV

DEPARTMENT OF INDUSTRIAL ENGINEERING, TEL AVIV UNIVERSITY,

TEL AVIV 69978, ISRAEL

Abstract. We study a generalized version of the minimum makespan jobshop problem in which multiple

instances of each job are to be processed. The system starts with specified inventory levels in all buffers

and finishes with some desired inventory levels of the buffers at the end of the planning horizon. A

schedule that minimizes the completion time of all the operations is sought.

We develop a polynomial time asymptotic approximation procedure for the problem. That is, the

ratio between the value of the delivered solution and the optimal one converge into one, as the mul-

tiplicity of the problem increases. Our algorithm uses the solution of the linear relaxation of a time

indexed Mixed Integer formulation of the problem. In addition, a heuristic method inspired by this

approximation algorithm is presented and is numerically shown to out-perform known methods for a

large set of standard test problems of moderate job multiplicity.

Keyword: Optimization, Jobshop, Approximations, Heuristics

1. Introduction

1.1. Background. The minimum makespan jobshop problem is a notoriously hard combinatorial op-

timization problem. It is known to be NP-Hard already for two machines instances (See, Lenstra and

Rinnooy-Kan (1979)) and for instances with three machines and three jobs (Sotskov and Shakhlevich

(1995)). Williamson et al. (1997) showed that the problem is not approximable within 5/4. The problem

is approximable within O(log2m) when m is the number of machines, if each job should be processed on

each of the machines at most once (Shmoys et al. (1994)). Goldberg et al. (1997) present a polynomial

time approximation algorithm for the general problem within

O (dmin(mOmax, Pmax)/ log log(mOmax)e log(mOmax)/ log log(mOmax))

when Omax denotes the maximal number of operations for a single job and Pmax denotes the maximal

processing time of an operation. Sevastjanov was the first to introduce a geometric approximation

algorithm that guaranty a solution value within a constant of the optimum, independent of the number

of jobs. This result was first reported in the western literature in Sevast’janov (1994).

Several specialized and generic meta-heuristics methods were applied to the minimum makespan job-

shop problem. For a survey on application of genetic Algorithms see Blackstone et al. (1982). An

Date: September 2013.

1

2 MASIN AND RAVIV

application of the Tabu search meta-heuristics is reported in Nowicki and Smutnicki (1996). Adams et al.

(1988) introduced a successful specialized heuristic, called the shifting bottleneck.

The fluid-based approximation paradigm was specifically designed for large instances of complex sched-

uling problems with high multiplicity, see Dai and Weiss (1996), Bertsimas and Gamarnik (1999), Dai

and Weiss (2002), Boudoukh et al. (2001), Bertsimas and Sethuraman (2002) and Bertsimas et al. (2003).

Recently, a new paradigm of approximation algorithms, referred as linear programming (LP) based algo-

rithm was introduced and applied for simpler scheduling problems. For literature on LP-based approxi-

mation scheduling see, e.g., Goemans et al. (2002), Chekuri and Khanna (2004), Savelsbergh et al. (1998),

Skutella (2006), Correa and Wagner (2005) and references therein. Both approaches derive dispatching

rules from the solutions of continuous relaxations of scheduling problems. The algorithm presented in

this paper builds on these two paradigms.

The high multiplicity jobshop is a variant of the jobshop model that allows multiple instances of each

job class. An asymptotically optimal algorithm, in this context, is one that provides an approximation

ratio that approaches one as the multiplicity of the jobs approaches infinity. Fluid-based heuristics are

based on the important observation that the scheduling of instances with a large number of items that

belong to few classes can be approximated by the optimal solution of a similar, but much simpler, fluid

control problem. Several asymptotically optimal algorithms based on this idea for the minimum makespan

high multiplicity jobshop problem have been developed. Bertsimas and Gamarnik (1999) presented an

approximation algorithm with a sub-linear error term. Bertsimas and Sethuraman (2002) and Boudoukh

et al. (2001) devised fluid-based heuristics with an additive error term. In practical terms, multiplicity

of several hundred is enough for obtaining near-optimal schedules using the above mentioned algorithms.

Brauner et al. (2005) pointed out that the analysis of the complexity of algorithms for high multiplicity

scheduling problems requires special care because their output may be exponential in size.They proposed

a complexity framework for this class.

Closely related literature deals with creating cyclic schedules for a set of jobs (sometimes also referred

to as periodic or high-multiplicity scheduling) assuming the number of part sets to schedule is infinite.

The objective in this line of literature is typically to minimize cycle time and/or the average flow time.

In this setting the transient behavior of the system is unimportant and the solution can be described in

terms of the schedule of a single cycle. For similar earlier studies, see Lee and Posner (1997), Hall et al.

(2002), and Leung et al. (2004). Kimbrel and Sviridenko (2008) shows that the problem is APX-hard

even for instances with a single class of jobs with unit time operations and provides an approximation

algorithm with approximation ratio that depends on the problem parameters for this problem. Amin

et al. (2011) and Kechadi et al. (2013) present heuristic methods based on simulated annealing neural

network, respectively, to solve the cyclic jobshop problem.

1.2. Problem definition and main results. In this paper we study a more general high multiplicity

jobshop model, in which in addition to multiplicity of jobs, the system may start and end with some pre-

specified initial and final inventory levels. Consequently, the multiplicity of operations may vary across

operations of the same job. We denote this model by J/multi, sr,o, er,o/Cmax, where sr,o represent the

fact that intermediate inventory levels at various production steps may be initially found in the system;

er,o represent the intermediate inventory that should be built by the end of the planning horizon. The

notation of sr,o and er,o is rigorously defined below. We note that this is a reentrant settings in which

jobs may visit the same machine several times. The objective is minimum makespan, i.e., to minimize

the completion time of the last operation. The main contributions of this study are:

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 3

1. Development of an efficient asymptotic approximation LP-based algorithm for the high multi-

plicity jobshop problem with an additive error of OmaxUmax where Omax denotes the number of

operations in the longest processing route and Umax denotes the maximal total processing time

of a single instance of all operations on a given machine. This improves the additive error of

Omax(Umax+2Pmax)1 achieved by the Fluid Synchronization Algorithm (FSA) of Bertsimas and

Sethuraman (2002), in which Pmax denotes the processing time of the longest operation. However,

it should be noted that the FSA procedure runs in linear time with respect to the multiplicity

of the jobs, while our procedure is much more demanding and its running time is bounded by

a polynomial in the total length of the operations. A significant and novel component of our

algorithm is a careful mathematical program formulation that enables us to borrow some ideas

from the analysis of Bertsimas and Sethuraman (2002).

2. Presentation and analysis of an α-point family of LP-based algorithms and a heuristic method

based on these algorithms. This heuristic is numerically shown to improve significantly over

existing algorithms for jobshop problems with moderate multiplicity. In our benchmark instances,

more than 80% of the optimality gap is closed on average with a minimal improvement of closing

50% of the gap. In addition, while the absolute gap of the existing algorithms is unaffected by

the multiplicity, our heuristic significantly reduces the absolute gap as the multiplicity grows. At

multiplicity 10 the absolute gap of the proposed algorithm is, on average, six times smaller than

the absolute gap of the existing algorithm.

3. Introduction of the first asymptotic approximation algorithm for the high multiplicity jobshop

problem with initial and final inventory of work in process. This feature makes our algorithm use-

ful in practical scenarios in which the manufacturing system operates continuously and decisions

are made in a rolling horizon manner. Consider, for example, a jobshop that accept orders for

new jobs every day and needs to schedule these jobs in addition to previous jobs that are already

completed some of their operations. Allowing planning for the final inventory (of semi-finished

jobs) may be useful in a hybrid make-to-stock setting when one does not wish to complete the

production until more information about the properties (such as color) of the desired final prod-

ucts is known. The analysis of this extension preformed in a straight forward manner in our

LP-approximation setting but may be more complex for previous methods such as the FSA.

The rest of the paper is organized as follow. In Section, 2, we provide a Mixed Integer Linear Pro-

gramming (MILP) formulation for the minimum makespan high multiplicity jobshop problem and study

its LP relaxation. The LP-based Synchronization Algorithm (LPSA) is introduced and analyzed in Sec-

tion 3. The dispatching rule derived in this section is based on the start time of each operation in the

LP-relaxed problem. In Section 4, LPSA is extended into a family of algorithms that is parameterized by

an arbitrary α-point. In Section 5, we propose a scheduling heuristic based on LPSA. This heuristic is

numerically tested and compared with competing methods and with lower bounds in Section 6. Finally,

we discuss our results and sketch some ideas for further research in Section 7.

1We present the results of Bertsimas and Sethuraman (2002) using our notation here for the sake of comparison. In

their notation, Umax is bounded from above by the number of job classes (I) times the maximal processing time Pmax and

Jmax ≡ Omax.

4 MASIN AND RAVIV

2. MILP Formulation and Partial Relaxation

In this section we present a time-indexed mixed-integer linear programming (MILP) formulation of the

J/multi, er,o, sr,o/Cmax problem. We then define a partial LP relaxation of it, which relaxes most but

not all of its integrality constraints. The partially relaxed model is shown to be solvable in polynomial

time. We use the following notations in the mathematical models below:

Indices

r Product classes (routes)

o Operations

The pair (r, o) denotes the oth operation of the rth product class. The buffer (r, o) refers to the

buffer that holds items that are waiting for operation (r, o).

i Machine

t Time periods

Constants

T The number of (discrete) time periods that constitute the planning horizon. T is assumed to be

sufficiently large for the completion of all the operations in an optimal solution of the minimal

makespan problem

I Set of machines

R Set of product classes

Or Set of operations of product class r

pr,o The time (integer number of periods) required to carry out a single instance of operation (r, o)

σi The set of operations carried out on machine i

σ(r, o) The machine that processes operation type (r, o)

sr,o Initial (start) buffer level of operation (r, o).

er,o Desired (end) buffer level of operation (r, o).

Ui Sum of the processing time of all the operation types on machine i, Ui =
∑

(r,o)∈σi pr,o.

The elements of each set S are named 1, ..., |S|. To simplify the notation, assume that any reference

to an element outside the valid range is omitted from the actual program and replaced with zero.

Decision variables

xr,o,t Binary variable that equals one if an instance of operation (r, o) is started on its machine at time

period t.

yr,o,t Number of jobs in buffer (r, o) at period t (after jobs that are starting to be processed at this

period were taken from the buffer but before jobs that finished their pervious operation at the

end of this period were placed into the buffer), it is defined for each period t = 0, ..., T + 1 where

yr,o,0 = sr,o is the initial level and yr,o,T+1 = er,o is the final level of the buffer of operation (r, o).

zt Binary variable that denote whether the system is active at period t.

We are now ready to present a MILP formulation of the high multiplicity jobshop problem. A relax-

ation of this formulation will serve as the basis to our LP-based Synchronization Algorithm (LPSA).

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 5

MILP1

min

T∑
t=1

zt(1)

zt ≥ zt+1 ∀t = 1, ..., T(2) ∑
(r,o)∈σi

t∑
τ=t−pr,o+1

xr,o,τ ≤ zt ∀t = 1, ..., T, i ∈ I(3)

yr,o,t−1 + xr,o−1,t−pr,o−1
− xr,o,t = yr,o,t ∀r ∈ R, o ∈ Or, t = 1, ..., T + 1(4)

yr,o,0 = sr,o ∀r ∈ R, o ∈ Or(5)

yr,o,T+1 = er,o ∀r ∈ R, o ∈ Or(6)

xr,o,t ∈ {0, 1} ∀r ∈ R, o ∈ Or, t = 1, ..., T(7)

zt ∈ {0, 1} ∀t = 1, ..., T(8)

yr,o,t ≥ 0 ∀r ∈ R, o ∈ Or, t = 1, ..., T(9)

Our objective (1) is to minimize the total number of active periods. Together with constraint (2) this

is equivalent to minimizing makespan. Constraint (3) limits the processing capacity of each machine

and relates zt to the actual processing start times represented by the x’s. Constraint (4) is an inventory

balance constraint that updates the buffer level, y. Constraints (5) and (6) define boundary conditions

for initial and final inventory levels of the buffers. The remaining constraints define the domains of x,

z and y. Note that the integrality of y is implied. The classical minimum makespan jobshop problem

is obtained as a special case of this model when er,o = 0 for all the operations (r, o), sr,o = 0 for all

operations with o > 2, and sr,1 = 1 for all product classes. We note that to solve the above MILP (and

its relaxation below) an upper bound on the required number of periods T is needed - we will address

this issue in the proof of Proposition 2.2 below.

Next we consider a partial LP relaxation of this MILP, obtained by replacing constraint (7) with

(10) xr,o,t ≥ 0 ∀r ∈ R, o ∈ Or, t = 1, ...T,

but keeping (8), the binarity constraint for zt. We call this new program MILP2. Then we define a new

constraint p′r,o ≥ pr,o. We will assume p′r,o = Uσ(r,o) until the end of Section 3. Additionally, we define

(11) δr,o ≡
o−1∑
q=1

p′r,q.

The number of instances of operations (r, o) to be carried out throughout the planning horizon is

(12) nr,o =

o∑
q=1

(sr,q − er,q) .

Recall that the initial inventory level at the first buffer of each route (sr,1) represents the amount of

raw material available for the system. A negative value of nr,o represents an infeasible instance of the

problem. The total working time to process all operations of type (r, o) is nr,opr,o. The congestion of the

system is defined as

(13) Ĉ = max
i

∑
(r,o)∈σi

nr,opr,o.

This is an obvious lower bound on the minimum makespan problem defined by MILP1. The next

inequality provides an upper bound on the minimum makespan.

6 MASIN AND RAVIV

Next we tighten MILP2 by adding the constraint

(14) xr,o,t = 0 ∀t > Ĉ + δr,o

and replacing the inventory balance constraint (4) with the following constraint, which we call the coor-

dination constraint,

(15) yr,o,t−1 + xr,o−1,t−p′r,o−1
− xr,o,t = yr,o,t ∀r ∈ R, o ∈ Or, t = 1, ..., T.

This creates a new program called MILP3. Recall that according to our convention, the term xr,o−1,t−p′r,o−1

for t ≤ pr,o−1 and for o = 1 are omitted, since they refer to negative index values. We argue that MILP3

is indeed more constrained than MILP2 in the sense defined by the following proposition.

Proposition 2.1. The optimal solution of MILP2 is not greater than the optimal solution of MILP3.

Proof. We show that for any feasible solution of MILP3, and in particular for the optimal one,

constructing a solution with the same objective function value for MILP2 is possible. Recall that the

objective functions of these two programs are identical and consist of the sums of the z variables. Next,

we rewrite constraints (4) and (5) in MILP2 as

(16) yr,o,t = sr,o +

t−pr,o−1∑
τ=1

xr,o−1,τ −
t∑

τ=1

xr,o,τ ∀r ∈ R, o ∈ Or, t = 0, ..., T.

This equations are obtained by summation of all the corresponding constraints (4) and (5) up to each

period t and thus equivalent. Similarly, constraints (5) and (15) of MILP3 can be rewritten as

(17) yr,o,t = sr,o +

t−p′r,o−1∑
τ=1

xr,o−1,τ −
t∑

τ=1

xr,o,τ ∀r ∈ R, o ∈ Or, t = 0, ..., T.

Now consider a feasible solution (x,y, z) of MILP3 and calculate new values for y using constraint (16)

based on the obtained values of x. We denote these values by ỹ. Now we complete the proof by showing

that (x, ỹ, z) is feasible for MILP2. Note that constraints (2), (3), (7), and (8) are satisfied because they

are identical in MILP2 and MILP3 and involve only the x and z variables. Now constraints (4) and (5)

are satisfied by (x, ỹ) since ỹ in calculate by equation (16) that equivalent to these constraints. Our only

remaining task is showing that the desired end-level constraints (6) and the non-negativity constraints of

the y variables (9) are satisfied.

To prove the nonnegativity of ỹ, note that the difference between equations (16) that determine the

value of the ỹ variables and equations (17) that define the y variables is that the right hand side of the

former includes several additional elements of the xr,o,t variables. Specifically, this difference is

t−pr,o−1∑
τ=t−p′r,o−1

xr,o−1,τ .

This difference must be non-negative because xr,o,t ≥ 0. Therefore ỹr,o,t ≥ yr,o,t ≥ 0 for all (r, o, t).

Finally, to show that constraint (6) is satisfied, we have to show that (x, ỹ, z) the inventory end levels

obtained by equation (16) at period T + 1 equals er,o. To this end, we show that for the same value of

xr,o,t, the right hand side of equations (16) and (17) are equal. Indeed, the difference between the two

equations is
T−pr,o−1∑

τ=T−p′r,o−1

xr,o−1,τ .

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 7

However, by equation (14) of MILP3, the value of these terms must be zero. �

Proposition 2.2.

OPT (MILP3) ≤ Ĉ + max
r

{
δr,|Or| + pr,|Or|

}
.

Proof. We construct a feasible solution for MILP3, with T = Ĉ + maxr
{
δr,|Or| + pr,|Or|

}
as follows

(18) xr,o,t =

{
nr,o

Ĉ
, 1 + δr,o ≤ t ≤ Ĉ + δr,o

0, otherwise.

zt = 1 for all t = 1...., T . Once the x’s are known, the values of the y’s are uniquely determined by

equations (5) and (15) so it is left to show that constraints (3), (6) and (9) are satisfied.

We first note that for all operations (r, o) and time periods t,

t∑
τ=t−pr,o+1

xr,o,τ ≤ pr,o
nr,o

Ĉ
≤ pr,onr,o∑

(r′,o′)∈σ(r,o)
nr′,o′pr′,o′

.

The last inequality follows from the definition of Ĉ in (13). Next, by summing the above inequality over

all operations carried out by each machine we see that the capacity constraint (3) is satisfied.

∑
(r,o)∈σi

t∑
τ=t−pr,o+1

xr,o,τ ≤ 1 ∀i ∈ I, t = 1, ..., T.

To prove the feasibility of our solution with respect to the non-negativity constraint (9) we rewrite

equality (15) as follows

(19) yr,o,t = sr,o +

t−p′r,o−1∑
τ=1

xr,o−1,τ −
t∑

τ=1

xr,o,τ .

By (18) we have
t−p′r,o−1∑
τ=1

xr,o−1,τ =

t−p′r,o−1∑
τ=1+δr,o−p′r,o−1

nr,o−1

Ĉ
= (t− δr,o)+nr,o−1

Ĉ

and
t∑

τ=1

xr,o,τ =

t∑
τ=1+δr,o

nr,o

Ĉ
= (t− δr,o)+nr,o

Ĉ

in which x+ ≡ max(0, x). Next, we can rewrite (19) as

(20) yr,o,t = sr,o + (t− δr,o)+nr,o−1 − nr,o
Ĉ

= sr,o + (t− δr,o)+ er,o − sr,o
Ĉ

The last equality follows directly from the definition of nr,o as in (12). Now, to prove that yr,o,t ≥ 0

it is sufficient to show that

sr,o ≥ (t− δr,o)
sr,o

Ĉ

which is true because t− δr,o ≤ Ĉ that is indeed the case. To understand this, recall that we defined the

length of the planning horizon to be T = Ĉ + maxr
(
pr,|Or| + δr,|Or|

)
and by definition δr,o ≤ δr,|Or|.

Finally, equation (6) holds since, from (20), yr,o,t = er,o for t = Ĉ+δr,o and in the constructed solution

xr,o−1,t−p′r,o = xr,o,t = 0 for t > Ĉ + δr,o.

8 MASIN AND RAVIV

We established the upper bound by presenting a feasible solution for MILP3 with T = Ĉ+maxr
{
δr,|Or| + pr,|Or|

}
.

�

Define Umax ≡ maxi∈I Ui, Pmax ≡ max(r,o) pr,o and Omax ≡ maxr∈R {|Or|}. Then the bound obtained

by Proposition 2.2 can be simplified as follows:

OPT (MILP3) ≤ Ĉ + (Omax − 1)Umax + Pmax.

While the feasible solution constructed in the proof of Proposition 2.2 is far from being optimal in

many typical instances of the problem, we point out that its gap from the lower bound Ĉ is independent

of the multiplicity of the jobs. That is the constructed solution is an asymptotically optimal solution of

MILP3, meaning that its relative gap from the optimal solution approaches one, as the number of jobs

in each class increases. In addition, note that this is an asymptotically optimal solution of MILP2, since

Ĉ is a lower bound of this program as well.

3. The LP Synchronization Algorithm

In this section, we define a dispatching rule for a jobshop model based on the optimal fractional solution

of MILP3. We show that the makespan of the resulted schedule is within a constant from the optimal

one. This constant is independent of the multiplicity of the instance, and therefore our dispatching rule

is asymptotically optimal.

In our high multiplicity setting the term operation refers to a class of tasks that are carried out at the

same position in the sequence on the same job type. Such tasks are repeated many times and each such

repetition is referred to as an operation instance. The nth instance of operation (r, o) is indexed by the

tuple (r, o, n)

Given a feasible solution of MILP3 we define the following constant LP Starting Time for each

operation instance (r, o, n):

LPS(r, o, n) = max

(
t ∈ {0, ..., T} :

t∑
τ=1

xr,o,τ ≤ n− 1

)
For n ≤ 0 we set LPS(r, o, n) = 0 by convention. In a solution of the discrete system, the (r, o, n)

operation instance is said to be available at time t, if the number of instances that completed operation

(r, o− 1) plus sr,o is at least n, but the number of operations (r, o) that started by this time is less than

n. We define the LP synchronization algorithm (LPSA) as follows:

The LP Synchronization Algorithm (LPSA): At any time t, when a machine i is ready and some

operation instances are available for it, start to process an instance that minimizes LPS(r, o, n) over the

set of available instances.

Note that LPSA can be applied to any feasible solution of MILP3, not only to necessarily its optimal

solution. Indeed, our polynomial time approximation procedure is based on a feasible solution of this

MILP constructed in Proposition 2.2 that can be obtained in negligible time. Both the FSA, introduced

by Bertsimas and Sethuraman (2002) and LPSA are based on relaxations of the minimum makespan high

multiplicity jobshop problem. However our LP formulation is tighter than the fluid one. We formalize

this statement by the following proposition:

Proposition 3.1. Any feasible solution of MILP3 is also a feasible solution of the fluid model presented

in equations (4)-(8) of Bertsimas and Sethuraman (2002).

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 9

Proof. We present the fluid model using our notation, in which yr,o(t) denotes fluid level in the buffer

of operation (r, o) at time t and xr,o(t) denotes the fraction of the capacity allocated by machine σr,o to

operation (r, o) at time t.

(21) min

∫ ∞
0

I {∃(r, o) : yr,o(t) 6= er,o} dt

(22) yr,1(t) = sr,1 −
∫ t

0

xr,1(τ)

pr,1
dτ ∀r ∈ R, t

(23) yr,o(t) = sr,o −
∫ t

0

xr,o(τ)

pr,o
dτ +

∫ t

0

xr,o−1(τ)

pr,o−1
dτ ∀r ∈ R, o = 2, ..., |Or|, t

(24)
∑

(r,o)∈σi

xr,o(t) ≤ 1 ∀i ∈ I, t

(25) xr,o(t), yr,o(t) ≥ 0 ∀(r, o), t

Note that this model is more general than the one presented in Bertsimas and Sethuraman (2002),

since it allows for the specification of initial and final levels of work in process in the system’s buffers.

The original model is obtained as a special case when sr,o = 0 for all the operations (r, o) with o > 1 and

er,o = 0 for all the operations (r, o). In the general case, finding the optimal may be computationally

hard and requires a specialized algorithm, such as the one presented in Weiss (2008).

It is easy to check that the above constraints are satisfied and that the value of the objective function

(21) is equal to that of MILP3 with a solution determined by the same xr,o,τ by selecting xr,o(t) =∑dte
τ=dt−pr,oe+1 xr,o,τ and determining yr,o(t) by equations (22) and (23). �

While both relaxations allow jobs to be divided and workstations to process fractions of different jobs at

the same time, the LP relaxation does not allow the same fraction of a job to be processed simultaneously

on different machines. In the model of MILP3, each fraction of an operation is delayed for the processing

time of the whole operation before it is available for the next one. This property of our LP relaxation

provides stronger lower bounds and delivers fractional solutions that are more similar to the discrete

solutions and therefore translate more readily into actual schedules. In addition, our LP formulation can

be easily extended to accommodate additional constraints and different objective functions, e.g., allowing

initial and final work in process.

We refer to the starting time of operation instance (r, o, n) returned by LPSA as the discrete starting

time of (r, o, n) and we denote it as DS(r, o, n). Similarly, we refer to the completion time of an operation

instance (r, o, n) in the schedule obtained by LPSA as the the discrete completion time and denote it as

DC(r, o, n). That is, DC(r, o, n) ≡ DS(r, o, n) + pr,o. For n ≤ 0 we set DC(r, o, n) = 0 by convention.

These constants may be used to encode any particular solution. When such a solution is obtained by the

LPSA, we have the following proposition:

Proposition 3.2. A solution obtained by LPSA satisfies

(A) LPS(r, o, n) ≥ DC(r, o− 1, n− sr,o)
(B) DC(r, o, n) ≤ LPS(r, o, n) + Uσ(r,o)

for all its operation instances (r, o, n).

10 MASIN AND RAVIV

Proof. With respect to the given solution, we define the following set of scheduling epochs 0 = t0 ≤
t1 < t2 < · · · , where each time tj denotes a time in which one or more operations instances are started

or ended. In other words, for each epoch tj , there are some instances (r, o, n) such that tj = DS(r, o, n)

or tj = DC(r, o, n).

We prove this proposition by induction on the scheduling epochs of the system. That is, we show

that the fact that the proposition holds for all operation instances (r, o, n) such that LPS(r, o, n) ≤ tj−1

implies it truth for all (r, o, n) instances such that LPS(r, o, n) ≤ tj .
For the induction base note that claim (A) holds for the first epoch since at time 0, only operations

instances with strictly positive initial inventory sr,o ≥ 1 can start being processed by MILP3. Claim (B)

holds trivially, because no operation is completed by time 0.

To proceed with (A), consider an instance (r, o, n) such that LPS(r, o, n) ≤ tj . The claim trivially

holds for n ≤ sr,o. Note that by constraints (5) and (15) of MILP3, LPS(r, o, n) ≥ LPS(r, o − 1, n −
sr,o) +Uσ(r,o−1) for all o > 1, n > sr,o. By (2), DC(r, o− 1, n− sr,o) ≤ LPS(r, o− 1, n− sr,o) +Uσ(r,o−1),

hence we obtain the required inequality LPS(r, o, n) ≥ DC(r, o− 1, n− sr,o).
To prove (B), note that if (A) holds for all (r, o, n), such that LPS(r, o, n) ≤ tj−1, the claim holds

for each machine at any scheduling epoch that occurs in an idle time of the machine, including the one

that concludes it and starts the next busy period. Clearly, during an idle time all the instances for which

LPS(r, o, n) is due were already started (and completed), otherwise the machine would have been busy

at this time in processing them.

We define a busy period of a machine in a given schedule as a period that starts and ends at an idle

time or at an epoch t̃, such that t̃ = DS(r, o, n) < LPS(r, o, n)2 for some instance (r, o, n). Consider an

epoch t = LPS(r′, o′, n′), such that DS(r′, o′, n′) ≥ t. Time t is either within or at the beginning of a

busy period of machine σ(r′, o′). We denote the beginning of this busy period by t′. Let kr,o denote the

number of instances of operation (r, o) that started in the continuous system on machine σ(r′, o′) during

the interval [t′, t]. That is, kr,o = |{n : t′ ≤ LPS(r, o, n) ≤ t}|. Note that for the kthr,o operations to start,

at least max(kr,o − 1, 0) ≡ (kr,o − 1)+ operations of this type must have been started and completed

during the interval in the LP solution. Let us denote the set of operations processed by machine σ(r, o)

by Σ(r, o) and let Σ−(r, o) = Σ(r, o) \ {(r, o)}. Then,

t− t′ ≥
∑

(r,o)∈Σ(r′,o′)

(kr,o − 1)+pr,o

. This is because in the continuous solution, pr,o units of time are allocated for each instance (r, o, n)

that was started and completed during the interval [t′, t]. Then,

DS(r′, o′, n′) ≤ t′ +
∑

(r,o)∈Σ−(r′,o′)|kr,o≥1

kr,opr,o +
∑

(r,o)∈Σ−(r′,o′)|kr,o=0

pr,o

= t′ +
∑

(r,o)∈Σ(r′,o′)

(kr,o − 1)+pr,o +
∑

(r,o)∈Σ−(r′,o′)

pr,o

≤ t′ + t− t′ +
∑

(r,o)∈Σ−(r′,o′)

pr,o

= t+
∑

(r,o)∈Σ−(r′,o′)

pr,o

= LPS(r′, o′, n′) +
∑

(r,o)∈Σ−(r′,o′)

pr,o.

2This may happen since, if a machine is ready at time t, LPSA dispatches an available operation instance with the

smallest LPS(r, o, n) even if LPS(r, o, n) > t

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 11

That is, the starting time in an actual discrete systemDS(r′, o′, n′) can be delayed by at most
∑

(r,o)∈Σ−(r′,o′) pr,o =

Uσ(r′,o′) − pr′o′ with respect to LPS(r′, o′, n′). Finally, since DC(r′, o′, n′) = DS(r′, o′, n′) + pr′,o′ claim

(B) follows. �

We denote the makespan obtained from LPSA by C(LPSA). The main result of this section is the

following approximation guarantee of LPSA.

Theorem 3.3.

C(LPSA) ≤ Ĉ + max
r

∑
o∈Or

Uσ(r,o) ≤ Ĉ +OmaxUmax

Proof. By Constraint (14) we conclude that

LPS(r, o, n) ≤ Ĉ + max
r

|Or|−1∑
o=1

Uσ(r,o) ≤ Ĉ + (Omax − 1)Umax

for all operations instances (r, o, n) and in particular for ones that determine the makespan of the sched-

ule obtained by LPSA. The claim is then followed by Proposition 3.2 stating that the completion time

DC(r, o, n) ≤ LPS(r, o, n) + Uσ(r,o). �

We point out that this is an asymptotically optimal approximation result since the upper bound is not

related to the actual number of operations to be performed. Clearly, if the number of operations of each

class to be performed by the system is Knr,o, then as K →∞ the ratio,

C(LPSA)

Ĉ
→ 1.

The approximation guarantee of Theorem 3.3 dominates the approximation obtained in Bertsimas and

Sethuraman (2002) for FSA, which can be stated, using our notation, as

C(FSA) ≤ Ĉ +maxr
∑
o∈Or

(
Uσ(r,o) + 2pr,o

)
≤ Ĉ +Omax(Umax + 2Pmax).

The difference between the approximation guarantees of the two methods may be substantial when

the number of operation classes carried out on each machine is relatively small or when the processing

time of few operation classes in each machine is much greater than the processing times of the rest.

Theorem 3.4. The asymptotic optimality of the LPSA procedure can be obtained in polynomial time

with respect to the size of its output.

Proof. We note that the approximation guaranty proved by Theorem 3.3 is applicable if LPSA is

applied with the feasible solution of MILP3 constructed in the proof of Proposition 2.2. Recall that

this solution can be obtained in constant time, independent of the multiplicity and the values of other

parameters. Once a feasible solution of MILP3 is known, LPSA determine which operation should be

dispatched on machine i, in O(|σi|) (recall that σi is the set of operations on machine i to choose from). �

12 MASIN AND RAVIV

4. α-Point Family of LP Synchronization Algorithms

In this section we generalized the LPSA algorithm presented in the previous section into a family of

similar asymptotically optimal approximation algorithms, in which the dispatching rule is determined by

the completion time of some predefined α fraction of the operation instances in the LP relaxation. The

proofs in this section are similar to corresponding proofs in previous ones and thus omitted from the text.

We show that the best approximation guarantee is obtained for either α = 0 or α = 1 but it is worth

to try using various value of α since the actual best solution can be obtained for any of these values. In

Section 5 we will use a similar concept to devise a successful heuristic for the high multiplicity jobshop

problem.

Let us define

Pi ≡ max
(r,o)∈σi

pr,o

and redefine p′r,o as follows:

(26) p′r,o ≡ pr,o + (1− α)(Uσ(r,o) − pr,o) + αPσ(r,o+1) = (1− α)Uσ(r,o) + α(pr,o + Pσ(r,o+1)),

where, α ∈ [0, 1]. Note, that when α = 0, we have p′r,o = Uσ(r,o), as in the previous sections.

Now we create a new auxiliary program parameterized by α called MILP3α by using p′r,o defined

in (26), adding α(|Or| − 1) parts to the initial inventory level of the first buffer for all products r, and

redefining Constraint (14). That is, we replace sr,1 by sr,1 + α(|Or| − 1).

Let us the number of instances of operation (r, o) to be performed in MILP3α by n′r,o = nr,o+α(|Or|−1),

then the total working time to process them is n′r,opr,o. The congestion of the system in MILP3α is

(27) Ĉ ′ = max
i

∑
(r,o)∈σi

n′r,opr,o = max
i

∑
(r,o)∈σi

(nr,o + α(|Or| − 1)) pr,o ≤ Ĉ + max
i

∑
(r,o)∈σi

α(|Or| − 1)pr,o.

Constraint (14) is replaced by Constraint (28) where Ĉ is replaced by Ĉ ′:

(28) xr,o,t = 0 ∀t > Ĉ ′ + δr,o

Clearly, MILP3 is a special case of MILP3α with α = 0. Please recall that δr,o defined in Equation

(11) will use the new p′r,o. Proposition 2.2 is generalized to

Proposition 4.1.

OPT (MILP3α) ≤ Ĉ + max
i

∑
(r,o)∈σi

α(|Or| − 1)pr,o + max
r

(δr,|Or| + pr,|Or|).

The bound obtained by Proposition 4.1 can be simplified to the following

OPT (MILP3α) ≤ Ĉ + (Omax − 1)Umax + Pmax + 2α(Omax − 1)Pmax,

and in particular, the claim of Proposition 2.2 is obtained as a special case for α = 0.

Since in MILP3α α(|Or| − 1) extra parts of each product r are produced, let us change its solution as

follows: for each (r, o) remove first α(o− 1) and last α(|Or| − o) instances, so that exactly nr,o instances

of operation (r, o) start. That is,

x′r,o,t = 0 ∀r ∈ R, o ∈ Or, t ∈

{
t :

t∑
τ=1

xr,o,τ ≤ α(o− 1) or

T∑
τ=t

xr,o,τ ≤ α(|Or| − o)

}
,

Now, if in the solution of MILP3α, for some operation (r, o), the first α(o − 1) instances are ended

in the “middle” of a discretized time unit, that is there exist a pair (r, o) and t = 1, ..., T such that

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 13∑t−1
τ=1 xr,o,τ < α(o− 1) but

∑t
τ=1 xr,o,τ ≥ α(o− 1), we have x′r,o,t =

∑t
τ=1 xr,o,τ − α(o− 1). Similarly, if

the last |Or| − o jobs start in a “middle” of a time unit, that is, there exist a pair (r, o) and time t such

that
∑T
τ=t+1 xr,o,τ < α(|Or|−o) but

∑T
τ=t xr,o,τ ≥ α(|Or|−o), we have x′r,o,t =

∑T
τ=t xr,o,τ −α(|Or|−o).

It can be verified that the resulting solution is a feasible solution of MILP3, where the values of

the y and z variables are uniquely determined by the values of the x. We refer to this solution as the

adjusted solution of MILP3α. Next we define the notion of α-points applied to any solution of MILP3α:

The LP α-Point Time: the time when the continuous system completes a fraction α of the nth instance

of operation (r, o) LPQ(r, o, n, 0) = LPS(r, o, n) + pr,o. Formally, LPQ(r, o, n, 0) = LPS(r, o, n) + pr,o

for α = 0 and LPQ(r, o, n, α) = min
(
t :
∑t
τ=1 xr,o,τ ≥ n− 1 + α

)
+ pr,o for α ∈ (0, 1].

For n ≤ 0 we set LPQ(r, o, n, α) = 0 by convention. Note that in the original solution of MILP3α,

Constraint (15) implies the following constraint on α-points for n > sr,o:

LPQ(r, o, n, α)− pr,o ≥ LPQ(r, o− 1, n− sr,o, α)− pr,o−1 + p′r,o−1,

whereas in the adjusted solution LPQ(r, o, n, α) becomes LPQ(r, o, n, 0) or, equivalently,

(29) LPS(r, o, n) ≥ LPQ(r, o− 1, n− sr,o, α) + (1− α)(Uσ(r,o−1) − pr,o−1) + αPσ(r,o)

Now we are ready to present the LP Synchronization Algorithm parameterized by α (LPSAα).

The LP Synchronization Algorithm (LPSAα): At any time t, when a machine i is ready and some

operation instances are available for it, process an available operation instance (r, o, n) that minimizes

LPQ(r, o, n, α) of the adjusted solution.

Proposition 4.2. A solution obtained by LPSAα satisfies

(A) LPS(r, o, n) ≥ DC(r, o− 1, n− sr,o) + αPσ(r,o).

(B) DC(r, o, n) ≤ LPQ(r, o, n, α) + (1− α)(Uσ(r,o) − pr,o).

for all operation instances (r, o, n).

Let us denote the makespan obtained from LPSAα by C(LPSAα). From Constraint (28) and Propo-

sition 4.2 the following approximation guarantee follows directly.

Theorem 4.3.

C(LPSAα) ≤ Ĉ + max
i

∑
(r,o)∈σi

α(|Or| − 1)pr,o + max
r

∑
o∈Or

(
(1− α)Uσ(r,o) + αpr,o

)
+ α

|Or|−1∑
o=1

Pσ(r,o+1)

≤ Ĉ +OmaxUmax + α (2OmaxPmax − Pmax − Umax) .

The result is a bit surprising—the approximation guarantee is linear in α, i.e., the best approximation

guarantee for LPSAα is obtained for either α = 0 or α = 1. These two cases may be intuitively explained

as follows. If the number of operation classes carried out on the bottleneck machine is relatively small,

say less than (2Omax − 1), then we have α = 0, otherwise, with many classes on the bottleneck machine

and, consequently, Pmax(2Omax − 1) < Umax, we have α = 1.

We point out that the schedule obtained by LPSAα is also asymptotically optimal for every α ∈
[0, 1]. Since using α-points can significantly improve LPSA-based heuristics as shown in our numerical

experiments below, asymptotic optimality of the whole family is a nice feature to have even though the

approximation guaranty for the cases with 0 < α < 1 is inferior.

14 MASIN AND RAVIV

5. LPSA Heuristic

In this section we present two heuristic methods that are based on the ideas of the LPSAα algorithm

presented above. In the next section, we show numerically that these methods can deliver a nearly

optimal solution for problem instances with moderate multiplicity.

The coordination constraint, (15), seems too restrictive. This is due to the fact that it is typically

possible in practice to dispatch each operation instance (r, o, n) long before (1 − α)Uσ(r,o−1) + αPσ(r,o)

units of time passed since its starting time on the previous machine on its route. An alternative approach,

presented in this section, is to solve the partial relaxation MILP2,with the original processing times and

number of operations, calculate LPQ(r, o, n, α) using its optimal solution, and apply LPSAα with various

values of α. We refer to this algorithm as LPSA-H1.

In addition, we derived yet another similar heuristic called LPSA-H2, by defining a variant of LPQ(r, o, n, α)

as follows: LPQ′(r, o, n, 0) = LPS(r, o, n) and LPQ′(r, o, n, α) = min
(
t :
∑t
τ=1 xr,o,τ ≥ n− 1 + α

)
+

αpr,o for α ∈ (0, 1] based on the same solution of MILP2, i.e., LPQ′(r, o, n, α) = LPQ(r, o, n, α) − (1 −
α)pr,o. The LPSAα algorithm can then be applied using various α-point completion times.

We show that MILP2 may be solved by solving a series of (continuous) linear programs. By Constraint

(2), the series of binary variables z1, ..., zT is non-increasing and thus uniquely defined by the last non-zero

element. All the elements up to this one equal one and the rest equal zero. A simple approach to solve

MILP2 would be to search for the index of the last non-zero element in z using a bisection method. For a

conjectured value of T ′ =
∑T
t=1 zt, we can solve an LP that is identical to MILP2 except that z1, ..., zT ′ = 1

and ZT ′+1, ..., zT = 0. If this LP is feasible, then the minimum makespan is bounded from above by T ′,

and otherwise it is bounded from below by T ′ + 1. For an initial lower bound, we can use Ĉ. An initial

upper bound can be obtained by any quick dispatching rule for the high multiplicity jobshop problem.

For example, LPSA itself can be used, based on some “smooth” feasible solution that can be obtained in

a manner similar to that of the feasible solution of MILP3, which is described in the proof of Proposition

2.2. The value of such a solution is bounded from above by Ĉ + maxr
∑|Or|
o=1 pr,o ≤ Ĉ + OmaxPmax.

The total number of calls to the LP by the bisection procedure is O (log (OmaxPmax)). Note that the

solution time of each LP is pseudo-polynomial in the size of the input because the number of variables

and constraints is exponential in the digit size of the parameters, but polynomial in the values of the

parameters. Hence, the overall complexity of this procedure is pseudo-polynomial. We cannot provide an

algorithm that dominates the complexity of such a bisection procedure, but we present a heuristic that

was shown to be much quicker in our numerical experiments. To this end, we define the following linear

program:

LP1

v∗ = min

UB∑
t=LB+1

wt · zt(30)

∑
(r,o)∈σi

t∑
τ=t−Uσ(r,o)+1

xr,o,τ ≤ 1 ∀t = 1, ..., LB, i ∈ I(31)

∑
(r,o)∈σi

t∑
τ=t−Uσ(r,o)+1

xr,o,τ ≤ zt ∀t = LB + 1, ..., UB, i ∈ I(32)

0 ≤ zt ≤ 1 ∀t = LB + 1, ..., UB(33)

and equations (4)− (10)

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 15

where LB and UB denote currently known lower and an upper bounds.

In addition, we define some series of non-decreasing positive constants wLB+1, ..., wUB , e.g., wt =

t − LB. Now we can solve MILP2 by solving LP1 iteratively with different values of LB and UB as

described below.

Algorithm 1. Solution Procedure for MILP2

Initialization: LB = Ĉ and UB equals the makespan obtained by some quick heuristic.

Step 1: Solve LP1 using the current LB and UB.

Step 2: If v∗ = 0 then

return current solution, as the optimal solution of MILP2, with zt = 1 for all

t = 1, ..., LB, zt = 0 for all t = LB + 1, ..., T ,

exit.

else

UB = max{t : zt > 0},
LB = min{t :

∑t
τ=LB+1 wτ ≥ v∗},

Goto step1.

We note that the solution of LP1 at Step 1 of Algorithm 1 is amendable to a “warm start”, since a

dual feasible solution can be constructed based on the optimal solution obtained in the previous iteration.

The algorithm 1 terminates in a finite number of iterations, because at each iteration the lower bound

is increased by at least one, and the upper bound is not increased. In practice, our tests show that

Algorithm 1 terminates in 2-5 iterations when used with weights 1, 22, 32,

An alternative initial lower bound for the makespan that dominates Ĉ can be obtain by

Ĉ+ = max
i∈I

 ∑
(r,o)∈σi

nr,opr,o + min
r:(r,o)∈σi

∑
o′<first(r,i)

pr,o′ + min
r:(r,o)∈σi

∑
o′>last(r,i)

pr,o′

where first(r, i) := min{o : (r, o) ∈ σi} and last(r, i) := max{o : (r, o) ∈ σi}. The idea behind this

lower bound is that the makespan cannot be smaller than the time it takes to process all the operations

on a machine plus the time that must pass before this machine may start its first operation and the

time that must pass after the last operations on the machine are completed and until other operations

of jobs processed by the machine are completed on machines down their routes. Clearly, for problem

instances with high multiplicity, Ĉ+ is relatively close to Ĉ, but it turns out that for instances with

moderate multiplicity, Ĉ+ may be much tighter than the Ĉ, allowing for a reduction in the running time

of Algorithm 1.

Note that since MILP2 is an LP relaxation of a valid formulation of the minimum makespan jobshop

problem, its optimal solution is a lower bound on the minimum makespan problem, and it is shown to

be a strong one.

Our numerical experiments in Section 6 show that the Algorithm 1 is computationally viable for fairly

large instances. Larger instances in which MILP2 could not be solved directly using Algorithm 1, can be

approximated by dividing the processing times of the operations by some factor, f > 1, and by rounding

the obtained ratios. We considered two rounding methods, either down or to the nearest integer, with

the exception that processing times that are smaller than the factor ar always rounded up to one. The

first rounding method yields a valid lower bound for the problem, while the second method sometimes

leads to better solutions when used with our heuristics.

16 MASIN AND RAVIV

The number of non-zeros in LP2 is approximately T (P +O) where T is the number of periods in

the planning horizon, P =
∑

(r,o) pr,o and O =
∑
r |Or|. Note that if all processing times pr,o are given

as integers, P ≥ O and typically P � O. Now by dividing all the processing times by f , the actual

makespan is also reduced approximately by a factor of f and hence the problem can be represented by an

LP with approximately TP
f2 + TO

f non zeros. That is, the number of non-zeros coefficients is reduced by

the order of O(f2). Assuming that due to processing time and memory limitations we are able to solve

a series of linear programs with up to K non zeros in the coefficient matrix, then f should be chosen as

the solution of
TP

f2
+
TO

f
= K

but not less than one. That is, we use

(34) f = max

{
1,
TO +

√
T 2O + 4KPT

2K

}
.

The solution time of MILP2 is by far the most computationally demanding part of both LPSA-H1 and

LPSA-H2. Since both heuristics are based on the same solution of MILP2 applying each one of them for

numerous values of α makes sense. In the experiment, describe below, we tried 1001 different quantiles

α = 0, 0.001, 0.002, ..., 1.

6. Numerical Experiment

In this section, we present the numerical study we carried out to demonstrate the applicability of our

heuristic algorithms. We applied both H1 and H2 methods to a set of 24 OR-Library benchmark jobshop

problems, see Beasley (1990). Specifically, we used one 6×6 problem denoted in OR-Lib by ’ft6’, thirteen

10×10 instances, denoted by ’ft10’, ’abz5’, ’abz6’, ’orb01’-’orb10’, five 20×10 problems, ’swv01’-’swv05’,

and five 20× 15 problems, ’swv06’-’swv10’.

The standard benchmark instances consist of a single job per route. Hence, to create problems with

higher multiplicity we duplicated each job several times. We created instances with uniform multiplicity

of 1,2,5, and 10. In addition, for the 6× 6 and 10× 10 instances, we also created instances with variable

multiplicity for each job, such that the total number of jobs was 28 and 50, respectively. Overall, we

tested 110 different instances. The largest problem instances we solved consisted of hundreds of jobs and

thousands of operations to be scheduled. Such problems are much too large for any exact optimization

method, or involved search heuristic such as the successful Shifting Bottleneck, introduced by Adams

et al. (1988).

We compared the solutions we obtained using the LPSA-H1 and H2 with those obtained using the

FSA proposed by Bertsimas and Sethuraman (2002). This algorithm, along with the similar GFA (see

Boudoukh et al. (2001)), are, to the best of our knowledge, the only existing algorithms designed specifi-

cally for high multiplicity jobshop problems. In addition, we compared our results with schedules obtained

by SPT, a simple dispatching rule that may surpass FSA for a few instances of low multiplicity, as shown

in Bertsimas and Sethuraman (2002).

LPSA-H1 produced better solutions for 46 out of our 110 test instances. H2 won in 38 cases and in

the rest of the instances the two methods tied. It appears that none of the methods dominated the other

and we recommend using both of them and selecting the best result. All of the results presented in this

section refer to the best results between LPSA-H1 and LPSA-H2.

Our test was conducted on an Intel Core 2 Duo E4500, 2.2GHz with 4GB of RAM. Algorithm 1 was

programmed in Ilog-Opl 5.2 and LP1 was coded in this modeling language. The solution of LP1 was

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 17

obtained by Ilog-Cplex 10.2 (64bit version). The implementation of Algorithm 1 is “quick and dirty” and

in particular we do not use the optimal result of each iteration as an advanced initial basis to warm start

the next iteration. Cplex was configured to use its barrier algorithm due to its superior performances

for very large linear programs. For the larger instances, the program size had to be reduced by a factor,

calculated by (34), as described in the previous section. We used K = 107 to obtain acceptable solution

times of the LP. The LPSA heuristics, as well as FSA and SPT, were programmed using MathWorks

Matlab 7.7. The processing times of both FSA and SPT are negligible and our method uses both

algorithms to create an initial upper bound for Algorithm 1. Initial lower bounds were obtained by Ĉ+.

In Tables 1 and 2 we present the values of the solutions obtained by FSA, SPT and the LPSA heuristics

along with the obtained lower bounds and some additional information. Table 1 presents the solution

values of the instances with fixed multiplicity of N = 1, 2, 5, and 10. Consequently, the number of jobs

in each route is exactly N . In the first column, we list the names of the instances as they appear in

OR-Lib. Exact descriptions of these instances can be found on the OR-Lib web site, see Beasley (1990).

The multiplicity is shown in the second column (N), and the table is sorted by it. In the third column,

we present Ĉ, the total processing time on the most loaded machine. This simple lower bound is used

by Bertsimas and Sethuraman (2002) and Boudoukh et al. (2001) to test their results with FSA and

GFA, respectively. The solutions obtained by the FSA and SPT heuristics are presented in the next two

columns. In the sixth column, we present the lower bound (LB) obtained by the MILP3 that we solved

using algorithm 1. In the seventh and eighth columns we present the solution obtained by our algorithms

(LPSA-H1 and LPSA-H2). These are the best out of 1001 values of α used (α = 0, 0.001, 0.002, ..., 1).

The next columns present information regarding the realization of our algorithm. First, we present the

factor that was used to reduce the processing time in the lager instances. A factor of 1 indicates that

no factorization was carried out. The next column defines the step when the optimal solution is found

by LPSA-H1. In the two rightmost columns, we present the processing times of Step 1 and Step 2,

respectively (Step 2 is only relevant for f > 1). These times represent almost all the processing times

required for solving the problems since the LPSA-H1 and H2 heuristics run, for all possible values of α

in negligible time.

In Table 2 we present the same details for problem instances with variable multiplicity of jobs.

The multiplicity of “ft06” here is (8, 4, 3, 1, 3, 9) and the multiplicity of the rest of the problems is

(8, 4, 3, 1, 3, 9, 7, 4, 10, 1). The structure of this table is identical to that of Table 1 except that the

column N , which describe the multiplicity, is omitted.

The performances of our algorithm for the 110 test instances are summarized in Table 3. The first

column presents the category of the instances in terms of multiplicity and dimension.The number of

instances in each category is shown in parenthesis. Each multiplicity category is divided into subcategories

based on the instances dimensions, namely the number of machines and job types. In the second column

we present the average improvement in the objective function value of the solutions obtained by our

algorithm, as compared to the best between FSA and SPT. That is

Solution Improvment =
min(FSA, SPT)−min(H1, H2)

min(FSA, SPT)
.

The third column presents the average increase of the lower bound that could be obtained using Algorithm

1, as compared to the simple Ĉ lower bound used by FSA. That is

LB Improvment =
C(LPSA)− Ĉ
C(LPSA)

.

18 MASIN AND RAVIV

Name N Ĉ Ĉ+ FSA SPT LPSA α = 0 H1 H2 Factor Opt. Time Time
L.B L.B Solution Solution L.B Solution Solution Solution Step Step 1 Step 2

ft06 1 43 52 65 88 55 70 59 59 1 1 1s -
abz5 1 868 1000 1467 1352 1135 1363 1281 1281 1 1 3h54 -
abz6 1 688 784 1045 1097 883 1039 980 982 1 1 1h56 -
ft10 1 631 796 1184 1074 859 1090 1044 1081 1 1 1h15 -
orb01 1 643 928 1368 1478 968 1271 1188 1154 1 1 0h50 -
orb02 1 671 733 1007 1175 813 1005 939 937 1 1 1h36 -
orb03 1 624 851 1405 1179 921 1317 1131 1131 1 1 1h4 -
orb04 1 759 833 1325 1236 944 1327 1088 1119 1 1 2h6 -
orb05 1 630 801 1155 1152 812 1028 941 964 1 1 0h57 -
orb06 1 659 930 1330 1190 939 1189 1081 1081 1 1 0h37 -
orb07 1 286 345 475 504 366 465 422 433 1 1 0h6 -
orb08 1 585 894 1225 1107 894 1127 996 1051 1 1 0h16 -
orb09 1 661 705 1189 1262 894 1176 1031 1019 1 1 2h39 -
orb10 1 652 868 1303 1113 911 1131 1012 1012 1 1 1h11 -
swv01 1 1219 1366 2154 1737 1366 1877 1600 1571 1.372 2 1h0 1h0
swv02 1 1259 1475 2157 1706 1475 1981 1621 1643 1.376 1 0h29 -
swv03 1 1178 1328 2019 1806 1328 1755 1567 1572 1.411 2 1h29 1h29
swv04 1 1161 1366 2015 1874 1388 1888 1681 1661 1.462 1 1h5 1h5
swv05 1 1235 1411 2003 1922 1411 1956 1608 1608 1.472 1 0h35 0h35
swv06 1 1229 1477 2519 2140 1521 2275 1907 1905 1.939 1 1h52 1h52
swv07 1 1128 1394 2268 2146 1409 1960 1867 1884 1.901 2 3h13 3h13
swv08 1 1330 1586 2554 2231 1585 2196 2049 2058 2.017 1 2h9 2h9
swv09 1 1266 1594 2498 2247 1594 2218 1940 1910 1.977 2 1h23 1h23
swv10 1 1159 1560 2352 2337 1560 2276 1947 1974 2.063 2 1h50 1h50
ft06 2 86 92 101 130 93 104 96 96 1 1 1s -
abz5 2 1736 1868 2188 2327 1868 2220 2056 2069 1.349 1 2h19 -
abz6 2 1376 1472 1726 1876 1472 1701 1547 1549 1 1 1h24 -
ft10 2 1262 1352 1812 1735 1397 1703 1620 1635 1 1 4h16 -
orb01 2 1286 1571 2015 2009 1580 1955 1855 1869 1 1 2h17 -
orb02 2 1342 1368 1664 1753 1389 1612 1510 1494 1 1 1h38 -
orb03 2 1248 1454 2040 1879 1485 1999 1736 1778 1 1 1h53 -
orb04 2 1518 1552 1965 2135 1552 1979 1750 1750 1 1 2h23 -
orb05 2 1260 1384 1817 1733 1384 1535 1481 1451 1 1 0h54 -
orb06 2 1318 1589 2049 1912 1589 1810 1722 1722 1 1 1h9 -
orb07 2 572 620 732 773 620 722 655 655 1 1 0h6 -
orb08 2 1170 1479 1898 1628 1480 1651 1588 1563 1 1 0h41 -
orb09 2 1322 1366 1738 1770 1387 1683 1624 1607 1 1 3h48 -
orb10 2 1304 1494 1857 1801 1503 1717 1662 1624 1 1 3h22 -
swv01 2 2438 2585 3385 2808 2585 3128 2849 2836 1.77 1 0h32 -
swv02 2 2518 2734 3346 3058 2733 3230 2850 2843 1.875 1 0h30 0h30
swv03 2 2356 2506 3195 2995 2505 3040 2738 2737 1.845 1 0h46 0h46
swv04 2 2322 2527 3217 3292 2529 3152 2866 2842 1.948 2 1h19 1h19
swv05 2 2470 2646 3237 3287 2645 3063 2786 2780 1.942 2 0h40 0h40
swv06 2 2458 2697 3579 3696 2696 3329 3160 3144 2.56 2 1h46 1h46
swv07 2 2256 2522 3384 3473 2522 3383 2977 2970 2.432 1 1h43 -
swv08 2 2660 2916 3757 3942 2916 3475 3292 3267 2.673 1 1h22 -
swv09 2 2532 2860 3767 3525 2858 3445 3100 3085 2.522 1 1h13 1h13
swv10 2 2318 2711 3977 3543 2710 3656 3194 3168 2.583 2 1h56 1h56
ft06 5 215 221 229 261 221 224 221 221 1 1 4s -
abz5 5 4340 4472 4797 5278 4530 4472 4472 2.029 1 1h36 -
abz6 5 3440 3536 3693 4105 3538 3536 3537 1.558 1 2h24 -
ft10 5 3155 3238 3731 3492 3237 3569 3287 3307 1.407 1 1h4 1h4
orb01 5 3215 3500 3962 4391 3500 3850 3747 3799 1.545 1 1h3 -
orb02 5 3355 3355 3659 3768 3402 3355 3355 1.462 1 2h3 -
orb03 5 3120 3326 3949 4224 3326 3701 3488 3534 1.527 2 0h44 0h44
orb04 5 3795 3829 4132 4488 3829 3964 3885 3910 1.61 1 1h38 -
orb05 5 3150 3180 3594 3796 3309 3180 3180 1.402 1 1h0 -
orb06 5 3295 3566 4080 4201 3567 3739 3659 3679 1.597 1 1h1 1h1
orb07 5 1430 1450 1584 1669 1461 1508 1477 1477 1 1 0h36 -
orb08 5 2925 3234 3581 3505 3234 3341 3299 3315 1.336 1 1h19 -
orb09 5 3305 3349 3801 3757 3349 3478 3384 3391 1.472 1 1h28 -
orb10 5 3260 3450 3675 3889 3509 3450 3474 1.503 1 1h8 -
swv01 5 6095 6242 7042 6589 6242 6693 6407 6379 2.81 1 0h37 0h37
swv02 5 6295 6511 7123 7101 6510 6975 6622 6604 2.964 1 0h42 0h42
swv03 5 5890 6040 6724 6827 6040 6604 6130 6129 2.862 1 0h35 -
swv04 5 5805 6010 6636 7372 6009 6632 6186 6152 2.886 1 0h41 0h41
swv05 5 6175 6351 6942 7271 6350 6709 6490 6480 2.94 1 0h42 0h42
swv06 5 6145 6384 7288 8063 6386 6971 6669 6680 3.798 1 1h23 1h23
swv07 5 5640 5906 6702 7290 5906 6442 6206 6201 3.552 1 2h1 -
swv08 5 6650 6906 7633 8194 6906 7617 7117 7117 3.962 1 1h16 -
swv09 5 6330 6658 7519 7952 6655 7208 6827 6847 3.842 1 1h14 1h14
swv10 5 5795 6164 7099 7816 6164 7168 6708 6737 3.795 1 2h25 -
ft06 10 430 436 444 496 436 436 436 436 1 1 8s -
abz5 10 8680 8812 9118 9857 8812 8812 8812 2.851 1 1h5 -
abz6 10 6880 6976 7105 7789 6976 6976 6976 2.202 1 1h28 -
ft10 10 6310 6393 6813 6644 6393 6550 6411 6407 1.98 1 0h51 -
orb01 10 6430 6715 7177 8280 6715 7117 6898 6956 2.119 2 1h0 1h0
orb02 10 6710 6710 6904 7155 6710 6710 6710 2.048 1 0h57 -
orb03 10 6240 6446 7038 7639 6446 6728 6583 6587 2.076 1 0h43 0h43
orb04 10 7590 7624 7927 8297 7624 7724 7647 7662 2.277 1 1h12 -
orb05 10 6300 6330 6637 7021 6330 6330 6330 1.942 1 0h49 -
orb06 10 6590 6861 7375 7938 6861 7043 6937 6987 2.188 1 0h56 -
orb07 10 2860 2880 3018 3109 2890 2923 2907 2908 1 1 1h8 -
orb08 10 5850 6159 6650 6486 6159 6262 6211 6186 1.854 2 1h9 1h9
orb09 10 6610 6654 7068 7017 6654 6758 6694 6683 2.052 1 1h24 -
orb10 10 6520 6710 6935 7239 6780 6729 6734 2.105 1 1h2 -
swv01 10 12190 12337 13137 12684 12334 12759 12451 12451 4.058 1 0h32 0h32
swv02 10 12590 12806 13418 13758 12806 13289 12942 12945 4.239 1 0h38 -
swv03 10 11780 11930 12614 13302 11930 12438 12026 12026 4.073 1 0h37 -
swv04 10 11610 11815 12330 14678 11815 12301 11859 11895 4.081 1 0h45 -
swv05 10 12350 12526 13117 13958 12526 12830 12609 12602 4.202 1 0h36 -
swv06 10 12290 12529 13398 15621 12529 13073 12756 12803 5.393 1 2h21 2h21
swv07 10 11280 11546 12310 13585 11546 12103 11739 11757 5.037 1 1h57 -
swv08 10 13300 13556 14376 15801 13556 14266 13813 13818 5.707 1 2h18 -
swv09 10 12660 12988 13849 15227 12988 13476 13188 13190 5.467 1 1h30 -
swv10 10 11590 11928 12968 15132 11926 12901 12433 12432 5.362 1 4h30 4h30

Table 1. Detailed solutions for fixed multiplicity instances

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 19

Name Ĉ Ĉ+ FSA SPT LPSA α = 0 H1 H2. Factor Opt. Time Time

L.B L.B Solution Solution L.B Solution Solution Solution Step Step 1 Step 2

ft06 195 197 215 228 197 202 197 198 1 1 3s -

abz5 4382 4395 5034 5320 4394 4891 4591 4593 2.081 2 2h56 1h7

abz6 3768 3768 4194 4447 3799 4031 3916 3915 1.665 2 3h28 3h1

ft10 3267 3350 3821 3703 3350 3571 3382 3382 1.452 1 0h58 -

orb01 3550 3835 4230 4305 3835 4264 4044 4047 1.6 1 1h4 0h50

orb02 3658 3680 4101 4395 3734 3888 3791 3777 1.552 1 2h44 0h0

orb03 3468 3674 4249 4432 3674 4056 3776 3797 1.587 1 1h6 -

orb04 3733 3767 4336 4223 3767 3911 3773 3773 1.628 1 1h45 -

orb05 3019 3163 3730 4170 3166 3558 3334 3331 1.43 2 1h17 1h9

orb06 3261 3532 3967 4340 3532 3809 3628 3628 1.574 1 1h13 -

orb07 1689 1709 1936 1974 1723 1756 1733 1727 1 1 0h41 -

orb08 2977 3286 3625 3572 3287 3486 3332 3333 1.35 2 0h52 0h22

orb09 3206 3250 3786 3849 3259 3487 3306 3320 1.478 1 1h57 1h54

orb10 3407 3575 3955 4622 3591 3778 3726 3720 1.563 2 4h11 2h0

Table 2. Detailed solutions for variable multiplicity instances [(8, 4, 3, 1, 3, 9) for ft06

and (8, 4, 3, 1, 3, 9, 7, 4, 10, 1) for the rest]

In the fourth column we present the fraction of the optimality gap that was closed when using our method.

The comparison is with the best between FSA and SPT, where Ĉ is used as a lower bound. That is,

Gap Reduction = 1− min(H1, H2)− C(LPSA)

min(FSA, STT)− Ĉ
.

Next we present the average optimality gap of LPSA,

Gap =
min(H1, H2)− C(LPSA)

min(H1, H2)
.

Finally the average CPU time required to solve MILP2 is presented in the rightmost column. The reported

time also includes the time required for the second step (rounding down) for instances with factor f > 1.

It is apparent from Table 3 that LPSA is capable of producing better solutions than FSA and SPT for

a large variety of problem instances with multiplicity of up to ten. In fact we got strictly better solutions

for 109 out of the 110 test problems (with the exception of swv01 with multiplicity 2 for which SPT

delivered the best solution).

It is apparent from Table 3 that LPSA is capable of producing better solutions than FSA and SPT

for a large variety of problem instances with multiplicity of up to ten. In fact, we got strictly better

solutions for 109 out of the 110 test problems, with the exception of swv01 with multiplicity 2 for which

SPT delivered the best solution.

We also observed that the linear relaxation we employ delivers better lower bounds than the simple Ĉ,

and in most cases also better than Ĉ+. However, for larger problem instances, we could only get a slight

increase of the lower bound. We believe that this is partially due to the effect of the larger factors that are

used with these instances. With additional computational effort or more sophisticated methods, MILP2

could be solved without factorizing the processing times and tighter lower bounds could be obtained.

As mentioned, we tried to use factors that kept the size of the linear programs solved by Algorithm

1 approximately constant (except for the smallest instances that could be solved with their original pro-

cessing times). Hence, relatively similar CPU times were obtained for all problem sizes and multiplicities.

In Table 4, we summarize our test of the effect of the number of α-points used on the best solutions

found by the LPSA heuristics. The table presents the average optimality gap obtained when using

2,11,101,1001 α-points as well as single points with α = 0. The reported result are the average of the best

result between H1 and H2 for each of the tested problem multiplicity. It appears that while a significant

improvement is obtained by applying the α-points methods the marginal improvement obtained from

increasing the number of α is not dramatic. Increasing the number of α-points from 11 to 1001 resulted

20 MASIN AND RAVIV

Multiplicity / Solution LB Gap Gap CPU

Dimensions Improvement Improvement Reduction Time

1 - (24) 10.56% 24.42% 67.14% 14.76% 1h49m

6× 6 (1) 9.23% 17.31% 68.18% 11.86% 1s

10× 10 (13) 9.61% 26.01% 71.09% 13.29% 1h25m

20× 10 (5) 11.10% 13.11% 64.55% 13.20% 1h24m

20× 15 (5) 12.77% 20.31% 59.28% 20.74% 3h45m

2 - (24) 9.31% 9.67% 67.22% 9.22% 1h45m

6× 6 (1) 4.95% 7.53% 80.00% 3.13% 1s

10× 10 (13) 9.04% 10.46% 67.79% 9.19% 2h02m

20× 10 (5) 8.08% 6.88% 64.68% 7.39% 1h04m

20× 15 (5) 12.10% 10.83% 65.69% 12.35% 2h04m

5 - (24) 7.20% 3.77% 85.89 2.19% 1h24m

6× 6 (1) 3.49% 2.71% 100% 0% 7s

10× 10 (13) 8.60% 3.89% 90.40% 1.60% 1h28m

20× 10 (5) 6.60% 2.87% 83.23% 1.86% 0h56m

20× 15 (5) 7.49% 4.58% 74.01% 4.51% 1h59m

10 - (24) 3.91% 1.38% 84.4% 0.95% 1h23

6× 6 (1) 1.80% 1.40% 100% 0% 8s

10× 10 (13) 4.00% 2.00% 93.15% 0.62% 1h10m

20× 10 (5) 3.56% 1.46% 86.59% 0.75% 0h41m

20× 15 (5) 4.45% 2.29% 76.70% 2.17% 2h53m

Variable - (14) 8.71% 3.65% 85.93% 2.24% 2h29m

6× 6 (1) 8.37% 1.02% 100% 0% 2s

10× 10 (13) 8.74% 3.85% 84.85% 2.42% 2h40m

all (110) 8.60% 8.57% 78.33% 6.20% 1h42m

Table 3. Summary statistics of the numerical experiment

Multiplicity α = 0 2 α-points 11 α-points 101 α-points 1001 α-points

1 32.94% 29.31% 15.31% 14.96% 14.76%

2 20.47% 16.98% 10.15% 9.39% 9.22%

5 6.37% 4.01% 2.48% 2.23% 2.19%

10 2.77% 1.51% 1.04% 0.98% 0.95%

Variable 6.89% 3.81% 2.41% 2.24% 2.24%

all 14.52% 11.79% 8.60% 8.46% 8.03%

Table 4. Effect of the number of α-points on the optimality gap

in an average reduction of 0.5% of the gap. However, since the processing time of the LPSA heuristics

is negligible, as compared to the substantial computational effort required for the solution of MILP2, we

recommend using at least 1001 points.

Table 3 does not tell the whole story about the effect of the multiplicity on LPSA effectiveness. As is

apparent in the table, the relative optimality gap diminishes as the multiplicity of the problem increases.

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 21

Multiplicity LPSA FSA

Avg. NAOG Avg. NAOG

1 100% 235%

2 101% 252%

5 47% 241%

10 39% 233%

Table 5. NAOG

This stems naturally from the asymptotic optimality property of LPSA, the approximation algorithm that

underlines our heuristic, and it is also the case for other competing methods such as the FSA. However,

our experiment supports the observation that LPSA delivers a smaller absolute optimality gap as the

multiplicity of the problems increases.

Statistical analysis of absolute gaps over different problem instances is not straightforward, because

the optimal makespan largely varies among the instances and the absolute gap tends to vary accordingly.

To overcome this issue, we defined the notion of normalized absolute optimality gap (NAOG). NAOG

is calculated by dividing the absolute optimality gap of instances with multiplicity greater than one, by

the absolute gap of an instance of the same problem with multiplicity of one (i.e., with a single instance

of each job). For example, the absolute optimality gap of LPSA for ’ft10’ with multiplicity of one is

1065 − 859 = 206 and with a multiplicity of five is 6450 − 6393 = 57. Now, the NAOG of ’ft10’ with a

multiplicity of five is 57/206 = 23%. One can use these normalized values over different problem instances

to understand the effects of multiplicity on this gap when comparing different algorithms.

In Table 5, we present the average NAOG of our 24 problem instances for multiplicities 1,2,5, and

10 for the solutions obtained from LPSA and FSA. The NAOG for both LPSA and FSA is calculated

relative to the optimality gap of LPSA with multiplicity one. Hence, the NAOG obtained by LPSA for

instances with multiplicity of one is by definition 100%. The results presented in the table implies that

in LPSA heuristics, the effect of multiplicity on the absolute gap is notable for multiplicity of five and

more.

We point out that the absolute, rather than the relative, optimality gap is of greater interest for the

planner, because this value represents the actual amount of “money that may have been left on the

table”. The results presented in Table 5 show that when using LPSA, this amount declines quickly as

the multiplicity increases.

7. Conclusions

In this study, we introduced a family of asymptotic approximation algorithms for the high multiplicity

jobshop minimum makespan problem that are based on a solution of a linear programming relaxation of a

time-indexed mixed integer linear program (MILP) model. The solution delivered from these algorithms

is given in terms of a dispatching rule that is derived from the start, completion, or α-point times of the

operations in the LP relaxation of the problem. We stress that a feasible solution of MILP3 that can be

obtained in polynomial yields the same approximation guarantee as the optimal solution of MILP3 (see

proof of Proposition 2.2). Therefore LPSA is a polynomial time approximation algorithm that dominates

previously known methods in terms of the theoretic approximation guaranty.

LPSA-H1 and H2 are heuristics methods based on LPSA that are shown to deliver substantially

better solutions than previously known heuristics for large set of OR-Lib test problems with moderate

22 MASIN AND RAVIV

multiplicity. In addition, apparently not only the relative optimality gap obtained from these methods

decreases as the job multiplicity increases, but so does the absolute gap. This is a unique property of the

method that is stronger than asymptotic optimality.

Naturally, to facilitate asymptotic approximation analysis, most of the high multiplicity scheduling

literature assume a very large number of jobs in each class. This is also the case for the analysis of our

approximation LPSA algorithm. However, in many applications, jobshop (as opposed to flow shops) is

used to produce many classes of items at small quantities in a flexible production environment. Current

technology and managerial trends advocate for agility and make-to-order policy rather than for mass

production. For these applications, the fact that our heuristic method outperforms previous methods for

problem instances with moderate multiplicity is significant.

Since LPSA and the proposed heuristics can be started with arbitrary initial inventories expressed

by sr,o, it is suitable for operation in a rolling horizon setting. That is, the algorithm is applicable for

operation in an environment in which information on new orders, machine breakdowns, and yield issues

are continually revealed.

Our heuristic methods are based on a solution of MILP2. We show that this MILP can be solved in

pseudo-polynomial time. Indeed, finding the optimal solutions to our test instances came at a significant

computational cost. However, we would like to point out that the techniques we used in our experiment for

solving MILP2 are sufficient to tackle many real-life problems. Consider, for example, a detailed monthly

plan for a jobshop with 15 machines. Assume that the month consists of 250 net working hours, the total

number of operations types isO = 225 (say, 15 job classes with 15 operation per job), and assume that each

operation takes one hour on average, p̄r,o = 1 hour. If the time is finely discretized into 5-minute periods,

which is enough to represents the accuracy of the data in most applications, then the planning horizon is

3000 periods long and the average processing time per operation is 12 periods. P = p̄r,o×O = 2700, and

so the number of non zeros in LP1 is about T (P +O) = 3000(2700+225) = 8, 775, 000. We demonstrated

that even larger instances, in terms of non zeros in the linear program, can be solved within a couple of

hours without factorizing the processing times.

In addition, a substantial reduction in the run time could be obtained by a more careful implementation

of the algorithm, e.g., by devising a columns generation procedure for LP1. Alternatively, LPSA can be

based on completely different MILP formulations of the jobshop problems, possibly one that is not time-

indexed and hence may be less sensitive to the digit size of the processing times.

We believe that this study paves the way for future interesting research. First, LPSA and LPSA-H

can be generalized for similar jobshop problems, such as the minimum flow time J/multi/
∑
ci, e.g.,

Bertsimas et al. (2003), as well as more general models with holding costs that are specific to each stage

in the production and with limitations on the buffer sizes. Furthermore, similar LP-based algorithms

can be devised for other complex systems such as assembly systems, multi-stage production systems,

scheduling of automated storage and retrieval systems (AS/RS), and the scheduling of railway systems,

etc.

References

Adams, J., E. Balas, D. Zawack. 1988. The shifting bottleneck procedure for job shop scheduling. Management

Sci. 34(3) 391–401.

Amin, J., M.A. Shafia, R. Tavakkoli-Moghaddam. 2011. A hybrid algorithm based on particle swarm optimization

and simulated annealing for a periodic job shop scheduling problem. The International Journal of Advanced

Manufacturing Technology 54(1-4) 309–322.

LP-BASED ALG. FOR THE MINIMUM MAKESPAN HIGH MULTIPLICITY JOBSHOP PROBLEM 23

Beasley, J.E. 1990. Or-library, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html. Web site.

Bertsimas, D., D. Gamarnik. 1999. Asymptotically optimal algorithm for job shop scheduling and packet routing.

J. of Algorithms 33(2) 296–318.

Bertsimas, D., D. Gamarnik, J. Sethuraman. 2003. From fluid relaxations to practical algorithms for job shop

scheduling: The holding cost objective. Oper. Res. 51(5) 798–813.

Bertsimas, D., J. Sethuraman. 2002. From fluid relaxations to practical algorithms for job shop scheduling: The

makespan objective. Math. Programming 92(1) 61–102.

Blackstone, J.H., D.T. Phillips, G.L. Hogg. 1982. A state-of-the-art survey of dispatching rules for manufacturing

job shop operations. International Journal of Production Research 20(1) 27–45.

Boudoukh, T., M. Penn, G. Weiss. 2001. Scheduling job shop with some identical or similar jobs. J. of Scheduling

4 177–199.

Brauner, N., Y. Crama, A. Grigoriev, J. van de Klundert. 2005. A framework for the complexity of high-

multiplicity scheduling problems. Journal of Combinatorial Optimization 9(3) 313–323.

Chekuri, C., S. Khanna. 2004. Handbook of Scheduling: Algorithms, Models, and Performance Analysis”, chap.

Approximation Algorithms for Minimizing Average Weighted Completion Time. CRC Press, Boca Raton,

Florida 33431, 11–1–11–30.

Correa, J.R., M.R. Wagner. 2005. Lp-based online scheduling: From single to parallel machines. Michael Jnger,

Volker Kaibel, eds., Integer Programming and Combinatorial Optimization, Lecture Notes in Computer

Science, vol. 3509. Springer Berlin Heidelberg, 196–209.

Dai, J.G., G. Weiss. 1996. Stability and instability of fluid models for certain re-entrant lines. Math. Oper. Res.

21(1) 115–134.

Dai, J.G., G. Weiss. 2002. A fluid heuristic for minimizing makespan in job-shops. Oper. Res. 50(4) 692–707.

Goemans, M., M. Queyranne, A.S. Schulz, M. Skutella, Y. Wang. 2002. Single machine scheduling with release

dates. SIAM Journal on Discrete Mathematics 15(2) 165–192.

Goldberg, Leslie Ann, Mike Paterson, Aravind Srinivasan, Elizabeth Sweedyk. 1997. Better approximation guar-

antees for job-shop scheduling. Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms. SODA ’97, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 599–608.

Hall, N.G., T.E. Lee, M.E. Posner. 2002. The complexity of cyclic shop scheduling problems. J. of Scheduling

5(4) 307–327.

Kechadi, M-Tahar, Kok Seng Low, G. Goncalves. 2013. Recurrent neural network approach for cyclic job shop

scheduling problem. Journal of Manufacturing Systems 32(4) 689 – 699.

Kimbrel, T., M. Sviridenko. 2008. High-multiplicity cyclic job shop scheduling. Operations Research Letters 36(5)

574 – 578.

Lee, T.E., M.E. Posner. 1997. Performance measures and schedule patterns in periodic job shops. Oper. Res.

45(1) 72–91.

Lenstra, J.K., A.H.G. Rinnooy-Kan. 1979. Computational complexity of discrete optimization problems. Annals

of Discrete Mathematics 4(8) 121–140.

Leung, J.M.Y., G. Zhang, X. Yang, R. Mak, K. Lam. 2004. Optimal cyclic multi-hoist scheduling: A mixed

integer programming approach. Operations Research 52(6) 965976.

Nowicki, E., C. Smutnicki. 1996. A fast taboo search algorithm for the job shop problem. Management Science

42(6) 797–813.

Savelsbergh, Martin W. P., R. N. Uma, Joel Wein. 1998. An experimental study of lp-based approximation

algorithms for scheduling problems. Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms. SODA ’98, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 453–462.

24 MASIN AND RAVIV

Sevast’janov, S.V. 1994. On some geometric methods in scheduling theory: a survey. Discrete Applied Mathematics

55(1) 59 – 82.

Shmoys, D.B., C.Stein, J.Wein. 1994. Improved approximation algorithms for shop scheduling problems. SIAM

Journal Computing 23(3) 617–632.

Skutella, M. 2006. List scheduling in order of α-points on a single machine. Lecture Notes in Computer Science

3484 250291.

Sotskov, Y.N., N.V. Shakhlevich. 1995. Np-hardness of shop-scheduling problems with three jobs 59(3) 237–266.

Weiss, G. 2008. A simplex based algorithm to solve separated continuous linear programs. Mathematical Pro-

gramming Series A 115(1) 151–198.

Williamson, D. P., L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K. Lenstra, S. V. Sevast’janov, D. B. Shmoys.

1997. Short shop schedules. Operations Research 45(2) 288–294.

