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Abstract 

In this paper, the constraint programming (CP) approach is applied for the simple assembly 

line balancing problem (SALBP) as well as some of its generalizations. CP is a rich modelling 

language that enables the formulation of general combinatorial problems and is coupled with a 

strong set of solution methods that are available through general purpose solvers. The proposed 

formulations are conversions of well-known mixed integer programming (MILP) formulations 

to CP, along with a new set of constraints that helps the CP solver to converge faster. As a 

generic solution method, we compare its performance with the best known generic MILP 

formulations and show that it consistently outperforms MILP for medium to large problem 

instances. A comparison with SALOME, a well-known custom-made algorithm for solving the 

SALBP-1, shows that both approaches are capable of efficiently solving problems with up to 

100 tasks. When 1000-task problems are concerned, SALOME provides better performance; 

however, CP can provide relatively good close to optimal solutions for multiple combinations 

of problem parameters. Finally, the generality of the CP approach is demonstrated by some 

adaptations of the proposed formulation to other variants of the assembly line balancing 

problem including the U-shaped assembly line balancing problem and the task assignment and 

equipment selection problem. 

 

Keywords: Constraint programming (CP), assembly line balancing, mixed-integer linear 

programming (MILP), branch & bound (B&B). 
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1 Introduction and literature review 

Assembly lines are often used in the last step of production, in which the final assembly of the 

product from previously manufactured parts is performed. An assembly line typically consists of 

several workstations in a sequential order, where each workstation is responsible for performing 

a specific set of tasks. The items move through the line from one workstation to the next 

according to their order and ending as finished products. 

 To maximize the efficiency of the line, the total assembly time has to be divided as equal as 

possible, among the workstations. This way, the workers’ idle time, caused by the load 

differences among stations, is minimized. Since the assembly of each product consists of 

indivisible elements (tasks), the problem of allocating the tasks to the stations becomes a 

combinatorial problem, which is called the assembly line balancing problem (Scholl, 1999). 

 The basic and most general structure of this problem, the simple assembly line balancing 

problem (SALBP), was first introduced by Salveson (1955). In this problem, a set of tasks, 

characterized by deterministic processing times and precedence constraints among them, has to 

be assigned to stations. Although the basic objective is to maximize the efficiency of the line (or 

minimize the total workers’ idle time), two common versions of the problem are known as the 

SALBP-1 and the SALBP-2 (Baybars 1986). The former minimizes the number of stations for a 

given (maximal) cycle time, and the latter minimizes the cycle time (or maximizes the 

throughput rate) for a given number of stations. Although many extensions of the SALBP have 

been investigated in the last few decades (see, for example, the reviews of Rekiek et al. 2002 and 

Becker and Scholl 2006), there are still attempts to develop efficient algorithms for the SALBP, 

which were shown to be NP-Hard (Baybars 1986) as a reduction of the partition problem (Karp, 

1972).  

 Due to the nature of these problems, both heuristic and exact methods have been developed 

over the years (Scholl and Becker 2006). In the exact methods, we can distinguish between 

generic methods, such as mixed-integer linear programming (MILP) and custom-made methods. 

The first mathematical formulation for the SALBP was introduces by Bowman (1960) and was 

later on improved by White (1961). An improved MILP formulation, which also presented 

additional upper- and lower-bound constraints on the number of stations, was presented in 

Patterson and Albracht (1975) and later on in Talbot and Patterson (1984). A comparison 

between several formulations was performed by Pastor et al. (2004). Amen (2006) was the first 
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to claim that the effectiveness of the designed formulation depends on the solution technique 

(e.g., branch-and-bound techniques with LP-relaxation or general implicit enumeration 

techniques). A recent improvement of the MILP formulation was presented in Pastor and Ferrer 

(2009), in which additional constraints on the station index were added for both SALBP-1 and 

SALBP-2. Note that although their formulation was found to be superior compared to previous 

MILP formulations, it was still outperformed by custom-made algorithms for large-scale 

instances of the problem (Otto et al. 2013).  

 The main exact custom-made algorithms for the SALBP (Baybars 1986, Scholl and Becker 

2006) can be divided to dynamic programming (Held et al. 1963, Jackson 1956, Schrage and 

Baker 1978) and branch and bound (B&B), while the latter significantly outperforms the former 

(Scholl and Klein 1997). Among others, one can mention the FABLE algorithm (Johnson 1988), 

Eureka (Hoffmann 1992), SALOME (Scholl and Klein 1997), and BB&R (Sewell and Jacobson 

2012, Morrison et al. 2014). The reason for the superiority of custom-made approaches over 

generic formulations may be explained by the fact that generic formulations cannot exploit the 

characteristics of a specific problem as a custom-made procedure does. However, the generic 

approach has an inherent advantage because it can be used as a building block for other 

variations of the line balancing problem by a minor modification of the objective functions 

and/or the constraints. Hence, we believe that there is need for further research in both directions.   

 One of the generic approaches for solving combinatorial optimization problems is constraint 

programming (CP). Several authors introduced solutions methods based on the CP paradigm to 

solve some variants of the assembly line balancing problems. Bockmayr and Pisaruk (2001) 

presented a hybrid algorithm, which combines CP and MILP, for solving a generalization of 

SALP-1. Pastor et al. (2007) compared several integer-programming formulations with CP for 

SALBP-1 and SALBP-2 using a commercial solver. They concluded that one of the integer 

programming models delivered the best solutions for each of the two problems. Schaus and 

Deville (2008) and Schaus (2009) compared several CP formulations and branching heuristics 

for the SALBP-2. Topaloglu et al. (2012) presented a rule-based model for an extension of the 

SALBP with alternative precedence constraints. The model was formulated as an integer 

program and as a CP. These models were solved using commercial solvers and the performances 

of CP were found superior. 
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In this paper, we suggest new CP based formulations for several variations of assembly line 

balancing problems. More specifically, we present formulations for SALBP-1, SALBP-2, the U-

shape assembly line balancing problem- type 1 and the equipment selection and task assignment 

problem (Bukchin and Tzur 2000). We use the SALBP-1 to demonstrate the effectiveness of the 

proposed method through an extensive experiment based on the diverse dataset introduced by 

Otto et al. (2011, 2013). The performance evaluation is carried out by comparison with the MILP 

formulation of Pastor and Ferrer (2009) and SALOME (Scholl and Klein 1997 SALOME). The 

reason is twofold: since the proposed approach is generic in nature, it is only natural to compare 

it to recent generic solution approaches. However, at the same time, it is important to compare 

CP with SALOME, which is considered as one of the most efficient custom-made solution 

procedures known to date for the SALBP. The effectiveness of the CP approach for the other 

variations was demonstrated by comparison with a state of the art MILP formulations solved by 

a commercial solver. 

  The main contribution of this study is first in demonstrating that, by exploiting certain 

special properties of the problem, CP is a general solution method that can be competitive with a 

state-of-the-art customized algorithm for the simple assembly line balancing problems. Next, we 

show that CP also performs well in solving various generalized assembly line balancing 

problems, when compared with mixed integer approach.  

 The rest of the paper is organized as follows. In the next section, an overview on constraint 

programming is provided, along with the formulation for SALBP-1. In Section 3, an extensive 

experiment is presented with a comparison between the proposed CP approach (solved with IBM 

ILOG CP Solver), SALOME and the MILP formulation of Pastor and Ferrer (2009) (solved with 

IBM CPLEX). In Section 4, we develop several formulations of CP for common generalized 

assembly line balancing problems and report on an extensive numerical experiment that 

demonstrates their merits. Concluding remarks are provided in Section 5. 

 

2 Constraint programming (CP) formulation 

2.1 An overview 

Constraint programming (CP) is a solution approach that is based on formulating combinatorial 

problems as constraint satisfaction models and solves them by using domain-specific or general 
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methods (see, for example, Apt 2003). In this study, we focus on the modeling aspect and use a 

state-of-the-art general commercial solver to demonstrate the effectiveness of our formulation. 

Using a general solver (either commercial or open source) is a practical and attractive option 

because it enables very rapid implementation of solution methods for a diverse set of 

optimization problems. It also makes it easy to apply minor modification and side constraints 

that can appear in practical settings. Using a rich modeling language, one can enlist a lot of the 

coding effort already conducted by the developers of the general solver to numerous particular 

optimization problems. CP has been successfully used to solve a variety of problems in the 

domains of vehicle routing, scheduling, timetabling and others. See, for example, Shaw (1998), 

Baptiste (2012) and Bukchin and Zaides (2016). 

 A CP solver solves a model by repeatedly applying and propagating its constraints to prune 

the domains of the decision variables and the objective function value. When no further pruning 

is possible, the solver divides the problem into sub-problems (branches), each with one 

additional constraint. This process iterated on the sub-problems until the domain of each of the 

decision variables is reduced to a singleton. Since the solver uses the constraints to prune the 

domains of the decision variable, an effective CP formulation consists of constraints that 

facilitate a strong reduction of these domains. That is, by pruning the domain of one variable, the 

constraints imply a substantial reduction of the domains of other variables. The art of CP 

modeling not only encompasses creating a set of constraints that defines the feasible solution set 

but also includes redundant constraints that express strong logical or mathematical relations 

between the values of the decision variable.  

 A CP model resembles an integer programming model in terms of syntax. It contains a 

deceleration of decision variables with their domains, a set of constraints, and possibly, an 

objective function. However, the CP modeling paradigm is much more expressive. In fact, the 

language is a superset of the integer linear programming modeling language. In addition to 

equality and inequality constraints between linear mathematical expressions, a CP model can 

contain non-linear expressions, logical expressions, use decision variables as indices to other 

vectors of decision variables, and include global constraints that capture a relationship between 

large sets of decision variables. Here are a few examples of valid expressions in a CP model:  

Reification – any valid logical expression including equality or inequality may be used as an 

argument of an indicator function that returns a value of one if the expression is true and zero 
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otherwise. For example, consider a vector of integer decision variables 𝑥𝑖, 𝑖 = 1. . 𝑛. If we wish 

to express the number of elements in the vector with a particular value, e.g., 17, we can do this in 

a CP model, using the following expression:  

∑(𝑥𝑖 = 17).

𝑛

𝑖=1

 

If we need that at least two 𝑥′𝑠 to be equal to 17, we could add the following constraint to the 

model. 

∑(𝑥𝑖 = 17) ≥ 2

𝑛

𝑖=1

 

Recall that equivalent constraints in MILP models require the introduction of additional decision 

variables. For example, we could define a binary variable 𝑦𝑖𝑗 that equals one if 𝑥𝑖 is equal to 𝑗 

and zero otherwise, and introduce the following constraints: 

∑ 𝑗𝑦𝑖𝑗

𝑗

= 𝑥𝑖    ∀𝑖 

∑ 𝑦𝑖𝑗

𝑗

= 1    ∀𝑖 

∑ 𝑦𝑖,17

𝑛

𝑖=1

≥ 2. 

All Different – this is a global constraint that allows requiring that each of the elements in a set 

of decision variables (e.g., a vector) obtains a different value. For example, if 𝑛 workers are 

needed to be assigned 𝑛 different jobs, a variable 𝑥𝑖 that denotes the job assigned to worker 𝑖 can 

be defined by 

AllDifferent(𝑥1, … , 𝑥𝑛). 

The solver is in charge of assigning valid values that satisfy this constraint (and possibly others 

in the model). In many cases, global constraints such as AllDifferent help prune the domains of 

the variables efficiently. Expressing this requirement in a MILP model would require the 

definition of a two-dimensional array of decisions variables and 2𝑛 equality constraints as in the 

classical formulation of the assignment problem. 

Domains of decision variables – A CP model contains a declaration of the decision variables 

and their domains. Many solvers support only finite discrete domains and, in particular, finite 
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sets of integers. An important special case is the Boolean variables with the domain {0,1}. The 

solver uses the initial domain as a starting point and then proceeds to prune them by applying the 

constraint and by branching on decision variables and dividing their domains. 

 

2.2  CP formulation for SALBP-1 

In this section, we present our CP formulation of the SALBP-1. To this end, we define the 

following notation: 

  Parameters 

𝑛 Number of tasks 

𝑐𝑡 Cycle time 

𝑡𝑖 Processing time of task 𝑖. We assume, without loss of generality, that 𝑡𝑖 is an integer 

𝑃𝑖 Set of immediate predecessors of task 𝑖 

𝑆𝑖 Set of immediate successors of task 𝑖 

𝑢𝑏 An upper bound for the number of stations in the optimal solution  

 

The decision variables in our model are straightforward: 

𝑥𝑖 The number of the station to which task 𝑖 is assigned 

𝑚 The total number of stations in the assembly line 

 

Using this notation, we can define the following CP model:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚 (1) 

∑(𝑥𝑖 = 𝑗)

𝑛

𝑖=1

𝑡𝑖 ≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑢𝑏 (2) 

𝑥𝑖 ≤ 𝑚     ∀𝑖: 𝑆𝑖 = ∅ (3) 

𝑥𝑖 ≤ 𝑥𝑗      ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ 𝑃𝑗 (4) 

𝑥𝑖 ∈ {1, … . , 𝑢𝑏}     ∀𝑖 ∈ 1, … , 𝑛 (5) 
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𝑚 ∈ {1, … , 𝑢𝑏} (6) 

 The objective function (1) directly minimizes the number of stations in the line. Constraint 

(2) stipulates that the total time of tasks assigned to each station does not exceed the allowed 

cycle time. Here, we use the reification expression (𝑥𝑖 = 𝑗) as an indicator function that equals 

one if the equation holds and zero otherwise. In Constraint 24, the value of the decision variable 

𝑚 is related to values of the 𝑥′𝑠 variables. In the optimal solution the solver will select 𝑚 =

max
𝑖

𝑥𝑖. Constraint (4) declares the precedence relationships between the tasks and, in (5) and 

(6), the initial domains of the decision variables are given. The upper bound on the number of 

stations was calculated using the randomized single path method (Arcus, 1965). 

 The CP formulation of the SALBP-1 is simpler and more direct that any MILP formulation 

because we are not limited to linear constraints here. While this formulation can be used as an 

input for a general purpose CP solver to tackle small instances of the problem in a reasonable 

amount of time, a tighter formulation can be used to solve a larger instance. To this end, we will 

need to define the following additional notation. 

�̃�𝑖 The set of all predecessors of task 𝑖 (either direct or indirect). 

�̃�𝑖 The set of all successors of task 𝑖 (either direct or indirect). 

Clearly, �̃� and �̃� can be readily constructed from the precedence constraints given above. Based 

on this set, we further calculate the following auxiliary parameters  

𝐸𝑖 = ⌈
𝑡𝑖 + ∑ 𝑡𝑘𝑘∈�̃�𝑖

𝑐𝑡
⌉ 

(7) 

 

𝐿𝑖 = ⌊
𝑡𝑖 − 1 + ∑ 𝑡𝑘𝑘∈�̃�𝑖

𝑐𝑡
⌋ 

(8) 

 

where ⌈𝑥⌉ (⌊𝑥⌋) is the smallest (largest) integer that is still larger (smaller) or equal to 𝑥. 𝐸𝑖 is a 

lower bound on the index of the station to which task 𝑖 can be assigned and, similarly, 𝐿𝑖 is a 

lower bound on the number of stations between the station of task 𝑖 and the last station in the 

line. Clearly, these two parameters can be calculated in a pre-processing procedure. The semantic 

of the 𝐿𝑖 parameter is slightly different from its common semantic in the literature, e.g., Pastor 

and Ferrer (2009), where 𝐿𝑖 denotes the last possible station of task 𝑖. Note that, in (8), one is 

subtracted from the nominator and the ratio is rounded down. One is subtracted because if the 
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sum  𝑡𝑖 + ∑ 𝑡𝑘𝑘∈�̃�𝑖
 is an integer multiplication of 𝑐𝑡, say 𝑘 = (𝑡𝑖 + ∑ 𝑡𝑘𝑘∈�̃�𝑖

)/𝑐𝑡 then the number 

of stations after the station of task 𝑖 should be 𝑘 − 1 and not 𝑘. 

 Next, we can add the following constraints to the CP formulation:  

𝐸𝑖 ≤ 𝑥𝑖 ≤ 𝑚 − 𝐿𝑖    ∀𝑖 = 1, … , 𝑛 

 

(9) 

 

This idea of limiting the earliest and latest station of each task is not a novel one; it is used by 

many previous MILP formulations. However, in the context of constraint programming, it is 

powerful because it not only reduces the initial domain of the 𝑥′𝑠 variables but also helps to 

propagate any change in the domain of 𝑚 on all the domains of the 𝑥′𝑠.  

 An additional way to tighten our CP formulation is based on the notion of minimal distance 

(in terms of stations) between each pair of tasks for which a direct or indirect precedence 

relationship is applied. We define the minimal distance between a pair of tasks as follows: 

 

𝐷𝑖𝑗 = ⌊
𝑡𝑖 + 𝑡𝑗 − 1 + ∑ 𝑡𝑘𝑘∈�̃�𝑖∩�̃�𝑗

𝑐𝑡
⌋              ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ �̃�𝑗 . 

(10) 

 

Note that the set �̃�𝑖 ∩ �̃�𝑗 consists of all tasks that should be assigned to some stations between the 

station of task 𝑖 and the station of task 𝑗 (inclusive). The sum in the numerator of (10) is the total 

time needed for all these tasks to be completed including tasks 𝑖 and  j minus 1; thus, by dividing 

this by the cycle time, 𝑐𝑡 and rounding down, we can obtain a lower bound on the difference 

𝑥𝑗 − 𝑥𝑖. Note that it is important to subtract 1 from the numerator; otherwise, the lower bound is 

not tight if the sum is an integer multiplication of ct.  Based on this observation, we replaced the 

task precedence constraint, (4), with the following stronger constraint 

𝑥𝑖 + 𝐷𝑖𝑗 ≤ 𝑥𝑗              ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ �̃�𝑗 . (4’) 

Interestingly the “distance”, 𝐷𝑖𝑗 , may violate the triangle inequality due to rounding 

considerations; namely, 𝐷𝑖𝑗 > 𝐷𝑖𝑘 + 𝐷𝑘𝑗 is possible. For example, assume that the cycle time is 

𝑐𝑡 = 10, there are three tasks 1,2,3 with 𝑡𝑖 = 4 for all i, and the precedence relationships are 

𝑃1 = ∅, 𝑃2 = {1}, 𝑃3 = {2} (�̃�3 = {1,2}). In this case, 𝐷12 = 𝐷23 = 0,  but 𝐷13 = 1 .  The best 

practice is to include all the instances of (4’) that are associated with direct precedence 

relationship or with indirect ones where the triangle inequality is violated. That is,  

𝑥𝑖 + 𝐷𝑖𝑗 ≤ 𝑥𝑗              ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ �̃�𝑗 ∧ (∄𝑘 ∈ �̃�𝑖 ∩ �̃�𝑗: 𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗). (4”) 
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By using (4”), we include only the instances of the extended precedence constraints that have the 

potential to reduce the domain of some decision variables.  Note that other instances of (4’) are 

implied by the direct precedence constraints and thus redundant and only increase the size of the 

model. 

 Finally, we tighten the above CP formulation by selecting a relatively small upper bound on 

the optimal number of stations (𝑢𝑏) . While setting 𝑢𝑏 = 𝑛  results in a perfectly valid 

formulation, a substantial reduction in the run time can be obtained by allocating some 

computational effort to establishing a better upper bound. Inspired by Otto et al. (2013), we use a 

simple greedy random heuristic that identifies a relatively good allocation of the tasks for the 

station (see Arcus 1965). We applied this randomized procedure 100 times and took the value of 

the best solution as an upper bound on the optimal solution. We noted that in our benchmark 

instances, this heuristic typically provides a solution within 10% of the optimum, which was 

much smaller than using the number of tasks 𝑛 as an upper bound. Clearly, a more sophisticated 

heuristic could be applied to obtain better upper bounds, but this is not the focus of this study.  

 

3 Experiments 

3.1 Experimental design 

The purpose of the experiments is to compare the performance of the CP formulation of SALBP-

1 against the Pastor and Ferrer (2009) MILP formulation (denoted from now on simply as MILP) 

and the Scholl and Klein (1997) SALOME custom-made branch and bound algorithm. As noted 

above, although SALOME has shown better performance than MILP, it is interesting to compare 

CP with MILP because both are generic solution approaches, which can be relatively easily 

adapted to other variants of the ALBP.  

 The selected dataset is drawn from Otto et al. (2011, 2013). The dataset includes 2100 

instances that are divided according to multiple parameters. The use of this relatively new dataset 

is justified by Otto et al. (2013); they claim that the currently existing datasets from the literature 

are not randomized nor are systematically diversified and therefore cannot be used as a 

representative sample. Moreover, these datasets do not contain realistic instances and are not 

capable of performing a thorough comparison between the solution procedures (Otto et al. 2013). 
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 In this study, we analyze the results first by the problem size parameter and then by other 

parameters related to the structure of the precedence diagram and the assembly time distribution. 

The dataset is divided into four sets of 525 instances, each for 20, 50, 100 and 1000 tasks. The 

first network structure parameter relates to the existence of chains and bottlenecks in the 

precedence diagram. A chain is defined by a series of tasks arranged in a path, in which the first 

has one successor, the last has one predecessor, and the rest have one predecessor and one 

successor each. A bottleneck task is defined as one that is the only successor of at least two other 

tasks and the only predecessor of at least two other tasks. The corresponding parameter has three 

values: (1) CH, which refers to networks that contains at least 40% chain tasks; (2) BN, which 

refers to networks that contain bottleneck tasks of at least a degree of eight for large scale 

problems and at least a degree of four for small scale problems; and (3) MIXED, which refers to 

all other networks for which the existence of chains/bottlenecks is not controlled. The second 

network structure parameter is the order strength (Thesen, 1977). The order strength (OS) 

expresses the ratio between the actual precedence relationships (direct and indirect) and all 

possible precedence relationships. The OS is equal to one if all tasks are arranged sequentially in 

one path and zero if no precedence exists between the tasks. The values considered in this study 

are 0.2, 0.6 and 0.9. The last parameter relates to the task time distribution, where we distinguish 

between bimodal distribution (BN) and two cases of unimodal distribution: pick at the bottom 

(PB) and pick in the middle (PM).  

 The results from the MILP and CP models were obtained on an Intel i7-4700 with 16GB 

RAM using Windows 7 (64-bit version). A time limit of 900 seconds was set to each of the 

1000-task instances and 300 seconds for each of the other instances. The MILP and the CP 

models were solved using the IBM CPLEX Studio 12.6.2 using its MILP and CP solvers. The 

code that was used to run the experiment and the detailed solutions are available from the authors 

upon request. 

 We replicated the experiment of Otto et al. (2013) with the SALOME executable file, 

available from www.assembly-line-balancing.de, on the same hardware used for the CP and 

MILP. However, since this code was designed for smaller memory model a time limit of 90 

seconds was set, in order to avoid out of memory errors.  

 

http://www.assembly-line-balancing.de/
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3.2 General results 

We will first report the general results on the different problem sizes. Here, we compare the CP 

solutions against MILP and SALOME for the 2100 instances. The results are shown in Table 1 

and Table 2. As can be expected, the problem size has a major effect on the performance of all 

solution approaches. However, we can observe that this factor also significantly affects the 

relative performance of the studied methods.  

 Table 1 presents the performance of each approach for each problem size, where the number 

of optimal solutions, as well as the average and maximal relative optimality gap, in percentage, 

and number of stations, is given. The comparison between CP and the other methods with 

respect to the solution values is given in Table 2, where each value denotes the number of 

instances in which CP was better, worse or equal to the other methods. Note that preliminary 

experiments have shown that although CP is often fast in finding near optimal or optimal 

solutions, it was rarely able to prove the optimality of these solutions. Hence, when it was 

possible, we have used the lower bound and optimal solutions obtained from the other solution 

methods to identify CP optimal solutions.   

 One can observe that in 20-task problems, all 525 instances were solved to optimality by all 

compared methods. Hence, this set of problems can be ignored from now on. 

 When the number of tasks increases to 50, one can see that CP and MILP provide nearly the 

same number of optimal solutions (474 and 472 out of the 525 instances, respectively), which is 

slightly higher than those obtained by SALOME (451). When looking at the optimality gap, we 

can observe similar phenomena because CP and MILP provide a lower optimality gap than 

SALOME, both in percentages and number of stations. Note that the gap was calculated with 

respect to the highest known lower bound that was obtained by either SALOME or the MILP 

model. When comparing the solutions values, we can see that CP provides better solutions than 

SALOME in 41 instances, while the opposite occurs only for five instances. The comparison 

with MILP also shows similar performance because CP is better in eight instances, while MILP 

outperforms in five instances. Due to the size of the problem, the differences in the number of 

stations in which one method is better than other are equal to one in most cases, with a maximal 

value of two. 

 When looking at the run times of CP, we can see in Figure 1a that the distribution is bimodal; 

most of the cases are solved quickly, while others did not reach an optimal solution within 300 
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seconds. More specifically, 422 instances were solved to optimality in less than two seconds, 65 

used the entire 300 seconds and the remaining 38 instances were spread across the range. 

 When increasing the number of tasks up to 100, we can see that the performance of MILP 

deteriorates compared to SALOME and CP. First, we can observe in Table 1 that SALOME and 

CP provide 355 and 351 optimal solutions, respectively; however, only 321 optimal solutions are 

obtained by using MILP. However, when looking at the optimality gap, we can see that CP 

performs much better than the other two solution approaches, providing an average gap of 1.49% 

(max 12.7%) versus 2.22% (max 16.7%) in SALOME and 2.76% (max 21.8%) in MILP. The 

average and maximal optimality gap in terms of the number of stations provides similar results, 

with 0.69 (max 7), 1.17 (max 8) and 1.34 (max 12) for CP, SALOME and MILP, respectively. 

The superiority of CP over SALOME and MILP is even clearer when comparing the solution 

value. We can observe that in the case of 100 tasks, CP provides significantly better results than 

SALOME and MILP because it is better than SALOME in 142 instances (worse in only 30) and 

better than MILP in 155 instances (worse in only 4 cases). Note that in the cases when CP is 

better than SALOME or MILP, the difference is up to 5 and 12 stations, respectively. The latter 

indicates that in some cases MILP may provide solutions that are far from optimal.  

  

Table 1. Performance of SALOME, MILP and CP in all problem instances 

No. 

of 

tasks 

No. Opt. Sol. Relative Opt. Gap (%) Absolute Opt. Gap (Stations) 

SALOME MILP CP 
SALOME MILP CP SALOME MILP CP 

Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max 

20 525 525 525 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 

50 451 474 472 0.78 14.8 0.54 12.0 0.54 12.0 0.21 4 1.139 3 0.133 3 

100 355 321 351 2.22 16.7 2.76 21.8 1.49 12.7 1.17 8 1.34 12 0.69 7 

1000 186 NA 4 2.88 16.2 NA NA 4.89 22.5 13.57 82 NA NA 21.37 116 

 

Table 2. CP versus other methods in all problem instances 

CP vs. 

other 

50 tasks 100 tasks 1000 tasks 

SALOME MILP SALOME MILP SALOME MILP 

CP Better 41 8 142 155 8 NA 

CP Worse 5 5 30 4 475 NA 

Equal 479 512 353 366 42 NA 
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The run time behavior of CP is similar to the one shown for the 50-task instances; however, 

typically, the run times are relatively longer, with a larger set of instances that use the maximal 

limit (see Figure 1b). In particular, 125 instances were solved to optimality in less than one 

second, 253 in less than four seconds, 218 used the entire time limit, and the remaining 54 

instances are distributed along the range. 

 

 

 
(a) 50-task instances 

 

 
(b) 100-task instances 

Figure 1. Run time distribution of CP 

  

 The results obtained from the dataset of the 1000-task instances are quite interesting: the 

comparison between CP and MILP is in line with the previous results, but the comparison with 

SALOME shows an opposite trend. First, we realized that MILP is not capable of solving such 

large instances because no feasible solutions were obtained within the 900 second time limits. 

CP, on the other hand, provides relatively good solutions (though not optimal in most cases) for 

most instances. The best performance was obtained by SALOME, both in the number of optimal 

solutions, the optimality gap and the solution value comparison. Specifically, 186 instances were 

solved to optimality by SALOME, while the CP was able to provide an optimal solution for only 

four instances. An average optimality gap of 2.88% (max 16.2%) was obtained by SALOME 

versus 4.89% (max 22.5%) by CP. Clearly, these values in terms of the number of stations were 

quite similar. The superiority of SALOME over CP is even clearer when looking at the solution 

value comparison because SALOME provided better solutions in 475 instances, with an opposite 

value of only eight instances. Note that although in most cases the difference in the number of 

stations is relatively small (1-4 stations for solutions of 100-200 stations), this value may 

increase by up to several dozen when the solution value is in the range of 500-600 stations.  
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 It should be made clear that the comparison of CP versus MILP and SALOME is not 

symmetric. While the two latter approaches are capable of providing a valid lower bound even 

when an optimal solution cannot be found (or optimality cannot be proven), the CP approach 

does not provide such a bound unless optimality is proven. Thus, for the larger and hardest 

instances that cannot be solved to optimality by exact methods, CP should be used as a heuristic. 

Indeed, one can use the CP to obtain a high quality solution in conjunction with other methods 

that are able to provide a lower bound so that the potential optimality gap can be controlled.  

 

3.3 The effect of the problem parameters 

As shown above, the performance of the studied methods is strongly affected by the problem size 

and possibly by other parameters. In this section, we examine the effect of the problem 

parameters on the relative performance of the solution approaches to design a recommended 

scheme regarding the best method(s) to use in each combination of parameters.  

 This problem is actually a classification problem in which the aim is to provide a prediction 

model to suggest the best method to use for each future instance. To this end, we have chosen to 

adopt a decision tree algorithm, the C4.5 (Quinlan 1993). This algorithm belongs to a group of 

supervised machine learning algorithms that constructs a decision tree based on maximal 

information gain, which is equivalent to minimum entropy (Shannon's 1948). The algorithm was 

executed on the WEKA machine learning software package (Hall et al. 2009).  

 As noted above, the 20-task problems were omitted from this study since all instances were 

solved to optimality by all approaches. Still, in the 50 and 100-task instances, most of the 

methods performed well, and most of the instances were solved to optimality. The resulting 

decision tree for the CP, when 50 and 100-task instances are concerned, indicated that this 

approach is recommended for all parameter combinations (namely, a tree with one node/leaf). 

The decision tree of SALOME and the MILP are shown in Figure 2a and b, respectively. In each 

leaf we can see the number of instances on the left and the number of classification mistakes on 

the right, where “Y” and “N” refer to the possible recommendation to use the algorithm in the 

associated class (set of parameters values). The absolute and relative number of mistakes can 

serve as an indicator of the strength of the recommendation. Both decision trees recommend 

using SALOME and MILP for all cases except for the case of 100 tasks and unimodal time 

distribution with “peak in the middle” (PM).  
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Last, we studied the 1000-task problems. As discussed above, in this set of problems, the 

SALOME outperforms CP in most of the instances, while the MILP cannot provide feasible 

solutions. Still, due to the advantage of using generic formulations (see above), we decided to 

examine the combination of parameters for which the CP can be used as an effective heuristic. 

To this end, we examined the optimality gap of the CP solution for each instance and defined a 

solution within a predefined gap as an acceptable solution. Two values of optimality gap were 

examined, 5% and 1%, and for each value, a decision tree was constructed. The decision tree for 

the former is presented in Figure 3. One can see that using CP as a heuristic is recommended for 

cases of unimodal time distribution with “pick at the bottom” (PB). For the bimodal time 

distribution, the decision depends on the order strength (OS), where the CP is recommended 

where the OS values are up to 0.6. 

 

Time dist.

Y(350, 1) Y(350, 0)

No. tasks

Y(175, 43) N(175, 34)

=BI

=PM

=PB

<=50 >50

 

(a) SALOME 

No. tasks

Y(525, 10)

N(175, 37)

Time dist.

Y(175, 34)

Y(175, 6)

<=50 >50

=PM=BI
=PB

 

(b) MILP 

Figure 2. Decision tree for SALOME and MILP, 50-100 tasks 

 

Time dist.

Y(175, 0) OS

Y(150, 3) N(25, 11)

=PB =BI
=PM

N(175, 7)

<=0.6 >0.6

 

Figure 3. Decision tree for the 1000-task dataset and 5% optimality gap 

 

 When reducing the optimality gap to 1%, namely, enforcing a more rigorous condition 

for defining a heuristic solution as acceptable, a more complicated decision tree is obtained (see 
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Figure 4). Clearly, since the condition for defining efficiency is tightened, all inefficient classes 

that were obtained for an optimality gap of 5% should remain, and the classes that define CP as 

an efficient heuristic should be subsets of the above classes. Indeed, we can observe that only 

subsets of the PB distribution are now recommended, where the high OS instances (above 0.6), 

and medium OS instances with a chain graph structure were excluded. Additionally, only a 

subset of the BI time distribution with small to medium order strength remained recommended 

(small OS and BN graph structure).       

Time dist.

OS

Y(25, 2)

N(25, 0)

=PB =BI
=PM

N(175.0)

N(25, 0)

OS

N(100, 0)Graph struct.

<=0.2 >0.2

N(25, 10)

=BN

=CH

=MIXED

Graph struct.

<=0.6 >0.6

Y(50, 3)

OS

Y(50, 8)

=BN

=CH

=MIXED

Y(25, 9) N(25, 3)

<=0.2 >0.2

 

Figure 4. Decision tree for the 1000-task dataset and 1% optimality gap 

 

4 Extensions 

In the previous section we have shown that the CP solver can hardly compete with custom-made 

solution approach, such as SALOME, however, performs nicely when compared to MILP, 

another generic solution approach. The purpose of this section is twofold; first, to show that the 

CP paradigm allows for a relatively easy formulation of other variants of the line balancing 

problem. Moreover, we also demonstrate how the same successful modeling ideas presented for 

the SALBP-1 can be applied for these problems. Second, to solve large number of instances of 

each variant with CP and MILP and compare their performance. The following variants of the 

assembly line balancing problem were formulated: 

1. The simple assembly line balancing type 2 (SALBP-2).  
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2. The U-shape assembly line balancing type 1 (UALBP-1). See Miltenburg and Wijingaard 

(1994), Urban (1998) and Scholl and Klein (1999). 

3. Task assignment and equipment selection to minimize equipment cost (Bukchin and Tzur 

2000).  

The CP formulation of these problems is presented in the following sub-subsections. 

 

4.1 The simple assembly line balancing - type 2 (SALBP-2) 

In SALBP-2, the setting is identical to those of SALBP-1, but instead of having the cycle time as 

part of the problem input and aiming to minimize the total number of stations, the goal is to 

minimize the cycle time for a given number of stations. To formulate it, we use the same 

notation used for model (1)-(6) and the extensions in (9) and (4”), but we set 𝑚 (the number of 

stations) as an input parameter and 𝑐𝑡 (the cycle time) as a decision variable. In addition, we 

calculate the values of 𝐸𝑖 , 𝐿𝑖 and 𝐷𝑖𝑗 with some upper bounds on the unknown cycle time.  

 We define lower bound (𝑙𝑏) and upper bound (𝑢𝑏) parameters to provide the model with the 

initial domain of the variable, 𝑐𝑡. The lower bound is simply the sum of the processing times 

divided by 𝑚 (Baybars, 1986). The upper bound was calculated using the same randomized 

simple path procedure (Arcus, 1965), applied repeatedly for  𝑐𝑡 = 𝑙𝑏, 𝑙𝑏 + 1, … until a feasible 

solution with 𝑚 stations was obtained.  The parameters, 𝐸𝑖 and 𝐿𝑖, are calculated based on 𝑢𝑏. 

With this notation, the following CP model may be used to solve the SALBP-2. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑡 (11) 

∑(𝑥𝑖 = 𝑗)

𝑛

𝑖=1

𝑡𝑖 ≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑚 (12) 

𝑥𝑖 ≤ 𝑥𝑗              ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ �̃�𝑗 (13) 

𝑥𝑖 ∈ {𝐸𝑖, … . , 𝑚 − 𝐿𝑖}     ∀𝑖 ∈ 1, … , 𝑛 (14) 

𝑐𝑡 ∈ {𝑙𝑏, … , 𝑢𝑏} (15) 
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 The objective function, (11), minimizes the cycle time. Constraint (12) limits the cycle time 

as specified. Constraint (13) states the precedence constraints in the same strong manner as in 

(4”). The domains of the decision variables are specified in (14) and (15).   

 The CP model (11)-(15) is a valid description of the SALBP-2, but it can be further 

strengthened by updating the values of 𝐸𝑖  and 𝐿𝑖 dynamically, while the model runs, instead of 

using their static value obtained by the preprocessing. In fact, equations (7), (8) and (10) can be 

added to the model. Many general solvers can handle the dynamic definition of the variable 

initial domains and the quantifiers to extract information that can be used to prune the decision 

variable domains and allow them to converge more quickly. 

 

4.2 The U-shape assembly line balancing problem - type 1 (UALBP-1) 

The U-shaped assembly line balancing problem (UALBP) is a variant of the SALBP (Miltenburg 

and Wijingaard 1994, Urban 1998, Scholl and Klein 1999). This design allows for greater 

flexibility in the allocation of tasks to stations and hence has the potential for a shorter cycle time 

and/or a smaller number of stations/workers. An example is given in Figure 5, where the circles 

denote the tasks, and the dotted lines are the stations. We can see that the stations are numbered 

from left to right (Stn. 1 to Stn. 5). In general, given a line with 𝑚 stations, each item is first 

moved from station 1 to 𝑚, and then returns back to station 𝑚 − 1, 𝑚 − 2, and so on, until it is 

completed at station 1 . Each station except for the last one may contain tasks, which are 

performed before reaching station 𝑚 (defined in Chiang et al. 2009 as the front of the line), and 

tasks that are performed after visiting station 𝑚 on the way back to station 1 (defined in Chiang  

1 2 4 5 3 7

11 10 9

8

6

Stn. 1 Stn. 2 Stn. 3 Stn. 4 Stn. 5

Sg. 1 Sg. 2 Sg. 3 Sg. 4

Sg.5

Sg.6Sg. 7Sg. 8Sg. 9

12

 

Figure 5. U-line example 
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et al. 2009 as the back of the line). Each such a station is called a crossover station.   

In order to utilize the special constraints of SALBP-1, we define a stage in the line, as a set of 

tasks (can be also empty) that is performed by a worker before moving the item to the next 

worker. As shown in Figure 5, a U-shaped line with 𝑚 stations, consists of 2𝑚 − 1 assembly 

stages; the first 𝑚 − 1 stages refer to the sets of tasks assigned to the front of stations 1 to 𝑚 − 1, 

stage 𝑚 contains the tasks assigned to (the regular) station 𝑚, and stages 𝑚 + 1 to 2𝑚 − 1, refer 

to the sets of tasks assigned to the back of stations 𝑚 − 1 to 1. Hence, each station 𝑗 contains two 

stages: stage 𝑗 (in the front of the line) and stage 2𝑚 − 𝑗 in the back of the line. Note that station 

𝑚 contains only one stage, since 𝑗 = 2𝑚 − 𝑗 in this case. In the 5-station example, depicted in 

Figure 5, stages 1 and 9 belong to station 1, stages 2 and 8 belong to station 2, stages 3 and 7 

belong to station 3, stages 4 and 6 belong to station 4 and stage 5 is solely carried out on station 5 

(since the back and the front sides coincide in the last station). The advantage of using both 

stations and stages in the model is that the precedence constraints can be presented in the same 

way as in SALBP, using stages, while the cycle time constraint is then associated with the 

stations.  

 The two types of the UALBP, UALBP-1 and UALBP-2 are equivalent to the two types of the 

SALBP. Here we present a formulation for the type 1 problem, where the goal is to minimize the 

number of stations, but the adaptation to the type 2 is as straightforward as it was for the SALBP. 

In the CP model (16)-(21) below, we use the same notation as in our models for the SALBP-1, 

presented in Section 2. In particular, 𝑢𝑏 denotes an upper bound on the number of stations in an 

optimal solution. Any upper bound for SALBP-1 is also a valid UALBP-1 since the solution 

space of the former is a subset of the latter.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚 (16) 

∑(𝑥𝑖 = 𝑗 ∨ 𝑥𝑖 = 2𝑚 − 𝑗)

𝑛

𝑖=1

𝑡𝑖 ≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑢𝑏 (17) 

𝑥𝑖 ≤ 2𝑚 − 1    ∀𝑖 = 1, … , 𝑛    ∀𝑖 = 1, … , 𝑛 (18) 

𝑥𝑖 ≤ 𝑥𝑗      ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ 𝑃𝑗 (19) 
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𝑥𝑖 ∈ {1, … . ,2𝑢𝑏 − 1}     ∀𝑖 ∈ 1, … , 𝑛 (20) 

𝑚 ∈ {1, … , 𝑢𝑏} (21) 

 The CP model of the UALBP-1 is a slight modification of the SALBP-1 model, as the task 

assignment variable 𝑥𝑖 is now associated with a stage. The objective function (16) minimizes the 

number of stations 𝑚. In Constraint (17), we use the ability of CP solvers to handle logical 

expressions directly. At each instance of this set of constraints, the processing times of the tasks 

assigned to the 𝑗𝑡ℎ  stage and to the (2𝑚 − 𝑗)𝑡ℎ  stage are summed and bounded by the given 

cycle time. In Constraint (18), the number of stations and the indices of stages of each task are 

related. The precedence relationship are enforced in Constraint (19) in the same manner as in (4) 

of the original model. 

 Finally, the values of 𝐸𝑖 , 𝐿𝑖 and 𝐷𝑖𝑗 can be calculated exactly as in SALBP-1 and can be used 

to strengthen the formulation in the same way. Thus, Constraint (18) should be revised to  

𝐸𝑖 ≤ 𝑥𝑖 ≤ 2𝑚 − 1 − 𝐿𝑖     ∀𝑖 = 1, … , 𝑛 
 

and Constraint (4”) of the SALBP-1, presented in Section 2, can be included in the model as is. 

 

4.3 Task assignment and equipment selection to minimize equipment cost 

(TAESP) 

The task assignment and equipment selection problem (TAESP), presented in Bukchin and Tzur 

(2000), is richer than the basic models discussed above. Here, in addition to allocating the tasks 

to stations along the assembly line, the planner also has to determine the type of machinery (e.g., 

robotic arm) installed at each station. Exactly one type is allowed at each station, and a cost is 

associated with each type of equipment. The processing time of each task is determined by the 

type of the equipment installed at its station. We denote by 𝑡𝑖𝑘 the processing time of task 𝑖 when 

performed by equipment type 𝑘. In this model, the cycle time, 𝑐𝑡, is given and fixed (as in 

SALBP-1), and the goal is to minimize the total equipment cost, which depends on the number 

of stations opened, 𝑚, and the type of equipment installed in each station. Note that this model 

can express situations in which a certain type of equipment 𝑘  cannot be used to perform 

assembly task 𝑖. In such a case, we can set 𝑡𝑖𝑘 > 𝑐𝑡.  
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 To formulate the problem as a CP model, we use the same notation introduced in Section 2, 

including the decision variables, and introduce the following additional notation: 

  

New parameters 

𝑢𝑏 An upper bounds on the number of stations in the line 

𝑙𝑏 A lower bounds on the number of stations in the line 

𝑞 Number of equipment types 

𝑐𝑘 Cost of installing equipment type 𝑘 in a station 

𝑡𝑖𝑘 The processing time of assembly task 𝑖 on equipment type 𝑘 

 

A new decision variable 

𝑦𝑗 The equipment type installed on station 𝑗 

 

Using this notation, we can define the following CP model:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑦𝑗
(𝑗 ≤ 𝑚)

𝑢𝑏

𝑗=1

 (22) 

∑(𝑥𝑖 = 𝑗)

𝑛

𝑖=1

𝑡𝑖,𝑦𝑗
≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑢𝑏 (23) 

𝑥𝑖 ≤ 𝑚             ∀𝑖 = 1, … , 𝑛 (24) 

𝑥𝑖 ≤ 𝑥𝑗              ∀𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ∈ 𝑃𝑗 (4) 

𝑦𝑗 ≤ 1 + (𝑞 − 1) ⋅ (𝑗 ≤ 𝑚)   ∀𝑗 = 1, … , 𝑢𝑏 (25) 

𝑥𝑖 ∈ {1, … . , 𝑢𝑏}     ∀𝑖 ∈ 1, … , 𝑛 (26) 

𝑦𝑗 ∈ {1, … , 𝑞} (27) 

𝑚 ∈ {𝑙𝑏, … , 𝑢𝑏} (28) 
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 In the objective function, (22), the cost of the equipment in all the stations is minimized. 

Here, we exploit the ability of CP solvers to accept decision variables as indices for vectors of 

other decision variables. The cost of the equipment in station 𝑗 is multiplied by zero if the station 

is beyond the end of the line. The cycle time is enforced by Constraint (23), again with the help 

of reification and advanced indexing. Note that this constraint is used to relate the equipment and 

the allocation decisions. Constraint (24) assures that no task is assigned beyond the end of the 

line.  Constraint (4) is the same precedence constraint used in our CP model for the SALBP-1. 

Constraint (25) is used to reduce the symmetry in the problem and forces the (fictitious) type of 

the equip ment allocated to unused stations beyond to end of the line to assume type 1. In 

(26)-(28), the initial domains of the decision variables are specified. 

 

4.4 Numerical experiments 

In this section, we present the results of our experiment with the CP formulations of the SALBP-

2, UALB-1 and the TAESP and compare them to the results obtained by standard MILP 

formulations available from the literature for these problems. For completeness, we present these 

MILP models in the appendix. We benchmarked the models with the medium and large instances 

(50 and 100 task problems, respectively) from Otto et al. (2013) dataset extended with relevant 

data where needed. Note that while this input was originally generated for the SALBP-1, their 

precedence graphs, processing times and cycle times are relevant for many other line balancing 

models. Recall that these data sets, each containing 525 instances, represent a large variety of 

problem parameters with different order strengths and distributions of the processing times. 

 The SALBP-1 data was adjusted to the other problem variants as follows. For the SALBP-2, 

a fixed number of stations was determined (𝑚 = 10), while the given cycle time, which is a 

decision variable in this model, was ignored. The input for the UALBP-1 is identical to the input 

of the SALBP-1 and was taken as is.  For the TAESP we set the number of optional equipment 

types to four for the 50-task instances and five for the 100-task instances.  The cost of each tool 

type was generated from 𝑈(80,120). The processing times of each task on each tool (𝑡𝑖𝑗) were 

drawn from 𝑈(0.5𝑡𝑖, 1.5𝑡𝑖) where 𝑡𝑖 is the nominal processing time in the original datasets.  All 

the random values were rounded to the nearest integer.  In addition, for each task we selected 

randomly 0-2 tools that cannot perform it. The corresponding 𝑡𝑖𝑗 were set to be larger than the 

cycle time. The precedence graphs and the cycle times were taken from the original data set as is.  



24 

 

 The experiment was conducted on standard Intel i7-4770 desktop with 16GB RAM.  We 

used CP and MILP solvers from the CPLEX Studio Suite. All the data sets are available upon 

request from the authors as CPLEX Studio input file. Five minutes were allocated for each 

instance in both of the solution methods.  The results of this experiment are summarized in Table 

3. 

 For each problem (SALBP-1, UALBP-2 and TAESP), the results of two sets of data are 

presented (50 and 100 tasks), each containing 525 instances. The first two columns identify the 

dataset, namely, the problem type and the number of tasks. The third (fourth) column, associated 

with CP (resp., MILP), contains three values: the number of instances for which CP (resp., 

MILP) performed better than MILP (resp., CP), the average gap, in percentage, between CP 

(resp., MILP) and MILP (resp., CP) for these cases, and the maximal gap. In the next column, 

the number of instances in which the MILP solver could not obtained a feasible solution within 

the allocated five minutes is presented. Note that the CP solver could obtain a feasible solution 

within few seconds for each of the 3150 instances in this experiment. The right most columns 

present the overall average improvement achieved by the CP solver compared to the MILP in 

percentage. For each instance the CP improvement was calculated as 

 

𝐼𝑚𝑝𝑟𝑜𝑣𝑚𝑒𝑛𝑡 =  
𝑀𝐼𝐿𝑃 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 −   𝐶𝑃 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑀𝐼𝐿𝑃 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
. 

 

Table 3. CP versus MILP  

Problem Number 

of tasks 

CP Better / 

Avg gap (%)/ 

Max gap (%) 

MILP Better/ 

Avg gap (%)/ 

Max gap (%) 

MILP 

Infeasible 

Average 

improvement (%) 

SALBP-2 50 59/0.09/0.17 129/0.11/0.28 0 -0.02 

100 100/0.05/0.10 173/0.05/0.15 0 -0.01 

UALBP-1 50 64/4.51/9.68 0/--/-- 0 0.55 

100 208/15.83/85.71 3/6.05/7.14 0 6.32 

TAESP 50 287/4.93/24.44 23/1.57/5.36 0 2.62 

100 514/29.54/85.82 10/2.65/5.52 152 28.59 
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 The average is calculated only for instances for which the MILP produced a feasible solution. 

All the differences between the two methods presented in the average improvement column are 

statistically significant with very small p-values  (< 0.0005). This is not surprising considering 

the size of the datasets. 

It is apparent from the table that the CP solver with our formulations performs substantially 

better than the MILP solver with the tested formulations for both the UALBP-1 and the TAESP. 

On the other hand, the performances of the MILP solver are marginally better for the SALBP-2. 

More specifically, when UALBP-1 and TAESP are concerned, CP outperforms MILP in 

significantly more instances than the opposite, and this effect is improved with the problem size 

(for example, 287 vs. 23 cases in the medium size TAESP, and 514 vs. 10 cases in the large scale 

TAESP).  Moreover, one can see that the average and relative gap is much larger in the instances 

where CP outperforms MILP. When the SALBP-2 in concerned, MILP outperforms CP in more 

instances, however, the average and maximal gap in both directions are very small and decreases 

with the number of tasks in the instance. One can attribute this result, which is quite different 

than the result of SALBP-1 to that CP performs much better for integral objective functions with 

small values.   

 

5 Concluding remarks  

New effective constraint-programming (CP) formulations for solving various assembly line 

balancing problems are presented in this paper. In particular, the simple assembly line balancing 

problem type 1 and 2, the U-Shape assembly line balancing problem and the tasks assignment 

and equipment selection problem, are considered. CP is a generic and expressive modeling 

language, and its models can be solved by several commercial or open source software packages. 

Many problems can be formulated much more easily as a CP model compared to a well-known 

and widely used mixed-integer linear-programming approach. The proposed CP formulations are 

a conversion of MILP formulations from the literature, while exploiting the modelling flexibility 

of CP along with a new tightening constraint. The performance of our formulations, when solved 

by a commercial solver was compared to the best MILP formulations that are known to date 

using a state-of-the-art MILP solver and the SALOME branch & bound algorithm. The latter is 

known as an efficient exact algorithm for SALBP-1.  
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 Results indicate that CP performs very well for SALBP-1 instances of up to 100 tasks. It 

provides optimal solutions for most of the instances and outperforms the MILP and SALOME in 

the number of best solutions obtained by each of the methods. In the dataset of 1000-task 

problem instances, SALOME was found to be superior. Still, in many cases, the CP-provided 

solutions are close to optimal. The MILP formulation was omitted from this experiment since it 

could not provide feasible solutions. A decision tree was constructed to define the parameter 

combinations for which CP can be used as an efficient heuristic for very large problem instances. 

 For the problem types other than SALB-1, our CP formulations were compared with 

equivalent MILP formulations, using 50 and 100 task test instances. Results demonstrate the 

superiority of the performances of the CP method over MILP for UALB-1 and the TAESP. For 

the SALBP-2 the MILP model delivers slightly better result than the CP approach but its 

advantage diminish with the size of the problems.  

 While this study is not the first to apply CP to line balancing problems, we believe that the 

line balancing research community has largely overlooked this paradigm, which is capable of 

providing very effective solutions for many generalizations of this problem. Moreover, the CP 

solvers have improved significantly in the last few years, emphasizing the great potential of 

applying CP for solving combinatorial optimization problems in general, and line balancing 

problems in particular.     

We hope that future research will justify this statement with respect to additional variants of the 

assembly line balancing problems and other related problems in the domain of designing 

manufacturing systems.  Moreover, due to the simplicity of the CP formulations and the ease of 

using the currently available solvers we believe that this method is very suitable for practitioners.  

 

Appendix 

In this appendix, we present the MILP formulations that were used to benchmark our CP models 

with respect the four line balancing variants, presented in the paper. All of these are identical or 

very similar to models that have already been presented in the literature and are presented here 

only for the sake of completeness.    
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The simple assembly line balancing problem - type 1 (SALBP-1) 

Here we present the formulation of the SALBP-1 presented in Pastor and Ferrer (2009) that was 

used by Otto et al. (2013) in their extensive numerical experiment. We use the same notation, 

lower bound and upper bound, presented above for the CP model, and define the following 

decision variables.   

𝑥𝑖𝑗 A binary variable that equals 1, if task 𝑖 is assigned to station 𝑗 

𝑦𝑗 A binary variable that equals 1, if some tasks are assigned to station 𝑗. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑗𝑦𝑗

𝑢𝑏

𝑗=𝑙𝑏+1

 (29) 

∑ 𝑥𝑖𝑗

𝑚−𝐿𝑖

𝑗=𝐸𝑖

= 1              ∀𝑖 = 1, … , 𝑛 (30) 

∑ 𝑡𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑙𝑏 (31) 

∑ 𝑡𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝑦𝑗𝑐𝑡      ∀𝑗 = 𝑙𝑏 + 1, … , 𝑢𝑏 (32) 

∑ 𝑗𝑥𝑖𝑗

𝑚−𝐿𝑖

𝑗=𝐸𝑖

≤    ∑ 𝑗𝑥𝑖𝑘

𝑚−𝐿𝑘

𝑗=𝐸𝑘

          ∀𝑖, 𝑘 = 1, … , 𝑛: 𝑖 ∈ 𝑃𝑘 (33) 

𝑥𝑖,𝐿𝑖−𝑞 ≤ 𝑦𝑢𝑏−𝑞     ∀𝑖 = 1, … , 𝑛, 𝑞 = 0, … , 𝑢𝑏 − 𝑙𝑏 − 1  

𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖 = 1, … , 𝑛, 𝑗 = 𝐸𝑖 , … , 𝑚 − 𝐿𝑖 (34) 

𝑦𝑗 ∈ {0,1}       𝑗 ∈ 𝑙𝑏 + 1, … , 𝑢𝑏 (35) 

The objective function (29) is indirectly minimizing the total number of stations and also aid in 

breaking symmetry in the solution space; constraint (30) implies that each task 𝑖 is assigned to 
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one and only one workstation; constraints (31) and (32) ensure that the total task processing time 

assigned to workstation 𝑗 does not exceed the cycle time; in addition constraint (32) also relate 

the 𝑥 and 𝑦 variables. Constraint (33) imposes the precedence conditions. The domains of the 

decision variables are defined in (34) and (35).  

 

The simple assembly line balancing problem - type 2 (SALBP-2) 

In this section, we present a formulation for the SALBP-2 adapted from Pastor and Ferrer, 

(2009). We use the same notation as presented above for the CP model and define the following 

decision variables:   

𝑐𝑡 The cycle time (exactly as in our CP model) 

𝑥𝑖𝑗 A binary variable that equals 1, if task 𝑖 is assigned to station 𝑗 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑡 (36) 

∑ 𝑡𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝑐𝑡      ∀𝑗 = 1, … , 𝑚 (37) 

∑ 𝑗𝑥𝑖𝑗

𝑚−𝐿𝑖

𝑗=𝐸𝑖

≤    ∑ 𝑗𝑥𝑖𝑘

𝑚−𝐿𝑘

𝑗=𝐸𝑘

          ∀𝑖, 𝑘 = 1, … , 𝑛: 𝑖 ∈ 𝑃𝑘 (38) 

∑ 𝑥𝑖𝑗

𝑚−𝐿𝑖

𝑗=𝐸𝑖

= 1              ∀𝑖 = 1, … , 𝑛 (39) 

𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖 = 1, … , 𝑛, 𝑗 = 𝐸𝑖 , … , 𝑚 − 𝐿𝑖 (40) 

The objective function (36) is minimizing the cycle time. Constraint (37) relates the 𝑐𝑡 variable 

to the total time of the tasks assigned to each station. Constraint (38) is the precedence constraint. 

Equation (39) stipulate that each task is assigned to one station in each relevant station range 

{𝐸𝑖, … , 𝑚 − 𝐿𝑖}. Note that we use the notation 𝐿𝑖 with the same semantic as in (14) in our CP 

model. That is, 𝐿𝑖 denote the minimal number of stations between the station of task 𝑖 and the 

end of the line. 𝐸𝑖  and 𝐿𝑖  are calculated based on the upper bound obtained by the same 
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procedure as described for the CP model above.  In (40) the domain of the 𝑥𝑖𝑗  variables is 

defined.   

 

The U-shaped assembly line balancing problem – type 1 (UALBP-1) 

Our formulation of the U-Shaped assembly line balancing problem is mathematically equivalent 

to standard formulation in the literature (Urban, 1998) but it is presented in a notation that is 

similar to the notation of our CP formulation. Namely, the tasks are assigned to production 

staged rather than to stations, and each worker along the line is responsible to stages that are 

related to both sides of the station.  The parameters 𝑢𝑏 and 𝑙𝑏 represent bounds on the number of 

stations (and not stages) in the line. The notation of the problem parameters is identical to the 

notation of the SALBP-1 and we defined the following decision variables. 

 

𝑥𝑖𝑗 A binary variable that equals 1 if task 𝑖 is assigned to production stage 𝑗 

𝑧𝑘  A binary variable that equals 1 if station 𝑘 is used  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑧𝑘

𝑢𝑏

𝑘=𝑙𝑏+1

 (41) 

∑ 𝑡𝑖(𝑥𝑖𝑘 + 𝑥𝑖,2𝑢𝑏+1−𝑘)

𝑛

𝑖=1

≤ 𝑐𝑡      ∀𝑘 = 1, … , 𝑢𝑏 (42) 

∑ 𝑗𝑥𝑖𝑗

2𝑢𝑏−1

𝑗=1

≤    ∑ 𝑗𝑥𝑖ℎ

2𝑢𝑏−1

𝑗=1

          ∀𝑖, ℎ = 1, … , 𝑛: 𝑖 ∈ 𝑃ℎ (43) 

∑ 𝑥𝑖𝑗

2𝑢𝑏−1

𝑗=1

= 1              ∀𝑖 = 1, … , 𝑛 (44) 

𝑥𝑖𝑘 + 𝑥𝑖,2𝑢𝑏+1−𝑘 ≤ 𝑧𝑘      ∀𝑖 = 1, … , 𝑛, 𝑘 = 𝑙𝑏 + 1, … , 𝑢𝑏 (45) 

𝑧𝑘 ≥ 𝑧𝑘+1         ∀𝑘 = 𝑙𝑏 + 1, … , 𝑢𝑏 − 1 (46) 
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𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖 = 1, … , 𝑛, 𝑗 = 𝐸𝑖, … , (2𝑢𝑏 − 1) − 𝐿𝑖 (47) 

𝑧𝑘 ∈ {0,1}     ∀𝑘 = 𝑙𝑏 + 1, … , 𝑢𝑏 (48) 

 

The objective function (41) minimizes the number of stations added to the lower bound on this 

number. Constraint (42) assures that the total time allocated at each station does not exceed the 

cycle time. Constraint (43) is a precedence constraint and since the tasks are assigned to stages it 

is identical to the one in the formulations of the SALBP. Constraint (44) stipulates that each task 

is assigned to one of the stages. Constraint (45) assures that a station is “opened” if a task is 

assigned to either of its sides.  Constraint (46) is a symmetry breaking constraint, which may 

ease the search procedure. Finally, the domain of the variables is defined in (47) and (48).  Note 

that the values of 𝐸𝑖 and 𝐿𝑖 are calculated based on the given cycle time, resulting a relatively 

weak bound. 

 

The task assignment and equipment selection problem (TAESP)  

Here we bring the formulation presented in Bukchin and Tzur (2000) and strengthen it with an 

additional symmetry breaking constraint that in our preliminary experimentations greatly 

reduced the run time.  Again, the notation of the parameters of the problem is the same as in the 

notation introduced for the CP model in Section 4.3, and thus is not repeated here.   The decision 

variables are defined as follow. 

𝑥𝑖𝑗𝑘 A binary variable that equals 1, if task 𝑖  is assigned to station 𝑗  and processed by 

equipment type 𝑘.  

𝑦𝑗𝑘 A binary variable that equals 1, if equipment type 𝑘 was selected for station 𝑗. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑘𝑦𝑗𝑘

𝑞

𝑘=1

𝑢𝑏

𝑗=1

 (49) 

∑ 𝑡𝑖𝑘𝑥𝑖𝑗𝑘

𝑛

𝑖=1

≤ 𝑦𝑗𝑘𝑐𝑡      ∀𝑗 = 1, … , 𝑢𝑏, 𝑘 = 1, … , 𝑞 (50) 
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∑ 𝑗 ∑ 𝑥𝑖𝑗𝑘

𝑞

𝑘=1

𝑢𝑏

𝑗=1

≤    ∑ 𝑗 ∑ 𝑥𝑖ℎ𝑘

𝑞

𝑘=1

𝑢𝑏

𝑗=1

          ∀𝑖, ℎ = 1, … , 𝑛: 𝑖 ∈ 𝑃ℎ (51) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑞

𝑘=1

𝑢𝑏

𝑗=1

= 1              ∀𝑖 = 1, … , 𝑛 (52) 

∑ 𝑦𝑗𝑘

𝑞

𝑘=1

≤ 1      ∀𝑗 = 1, … , 𝑢𝑏 (53) 

∑ 𝑦𝑗𝑘

𝑞

𝑘=1

≥ ∑ 𝑦𝑗+1,𝑘

𝑞

𝑘=1

         ∀𝑗 = 1, … , 𝑢𝑏 − 1 (54) 

𝑥𝑖𝑗𝑘 ∈ {0,1}       ∀𝑖 = 1, … , 𝑛, 𝑗 ∈ 1, … , 𝑢𝑏, 𝑘 = 1, … , 𝑞 (55) 

𝑦𝑗𝑘 ∈ {0,1}    ∀𝑗 = 1, … , 𝑢𝑏, 𝑘 = 1, … , 𝑞 (56) 

The objective function (49) minimizes the total cost of all the selected tools. Constraint (50) 

assures that the cycle time is not violated and that the process time of each task is determined by 

the equipment type selected for this station. Constraint (51) is the adaptation of the standard 

precedence constraint to this problem. Constraint (52) stipulates that each task is assigned once.  

Constraint (53) assures that at most one equipment type is selected for each potential station. 

Constraint (54) eliminates symmetry in the solution space by forcing all the active (equipped) 

station to the beginning of the line. Constraints (55) and (56) define the domains of the decision 

variables. 
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